Matches in SemOpenAlex for { <https://semopenalex.org/work/W2956222435> ?p ?o ?g. }
- W2956222435 endingPage "3421" @default.
- W2956222435 startingPage "3413" @default.
- W2956222435 abstract "Predicting the strength of stacking interactions involving heterocycles is vital for several fields, including structure-based drug design. While quantum chemical computations can provide accurate stacking interaction energies, these come at a steep computational cost. To address this challenge, we recently developed quantitative predictive models of stacking interactions between druglike heterocycles and the aromatic amino acids Phe, Tyr, and Trp (DOI: 10.1021/jacs.9b00936 ). These models depend on heterocycle descriptors derived from electrostatic potentials (ESPs) computed using density functional theory and provide accurate stacking interactions without the need for expensive computations on stacked dimers. Herein, we show that these ESP-based descriptors can be reliably evaluated directly from the atom connectivity of the heterocycle, providing a means of predicting both the descriptors and the potential for a given heterocycle to engage in stacking interactions without resorting to any quantum chemical computations. This enables the rapid conversion of simple molecular representations (e.g., SMILES) directly into accurate stacking interaction energies using a freely available online tool, thereby providing a way to rank the stacking abilities of large sets of heterocycles." @default.
- W2956222435 created "2019-07-23" @default.
- W2956222435 creator A5007309417 @default.
- W2956222435 creator A5027539046 @default.
- W2956222435 date "2019-07-16" @default.
- W2956222435 modified "2023-09-24" @default.
- W2956222435 title "Converting SMILES to Stacking Interaction Energies" @default.
- W2956222435 cites W1554563779 @default.
- W2956222435 cites W1930548073 @default.
- W2956222435 cites W1969510290 @default.
- W2956222435 cites W1983693962 @default.
- W2956222435 cites W1988091937 @default.
- W2956222435 cites W1989929893 @default.
- W2956222435 cites W1990566970 @default.
- W2956222435 cites W2002433816 @default.
- W2956222435 cites W2018674598 @default.
- W2956222435 cites W2030841140 @default.
- W2956222435 cites W2039155367 @default.
- W2956222435 cites W2043592573 @default.
- W2956222435 cites W2045349985 @default.
- W2956222435 cites W2048631643 @default.
- W2956222435 cites W2063021257 @default.
- W2956222435 cites W2065294654 @default.
- W2956222435 cites W2069006374 @default.
- W2956222435 cites W2069121350 @default.
- W2956222435 cites W2069385410 @default.
- W2956222435 cites W2074337891 @default.
- W2956222435 cites W2078511427 @default.
- W2956222435 cites W2087864238 @default.
- W2956222435 cites W2088440641 @default.
- W2956222435 cites W2112850441 @default.
- W2956222435 cites W2117569373 @default.
- W2956222435 cites W2131781277 @default.
- W2956222435 cites W2160136723 @default.
- W2956222435 cites W2169678694 @default.
- W2956222435 cites W2172235361 @default.
- W2956222435 cites W2177590625 @default.
- W2956222435 cites W2292147128 @default.
- W2956222435 cites W2331368237 @default.
- W2956222435 cites W2337489981 @default.
- W2956222435 cites W2338555109 @default.
- W2956222435 cites W2345159345 @default.
- W2956222435 cites W2397070557 @default.
- W2956222435 cites W2422341232 @default.
- W2956222435 cites W2460551968 @default.
- W2956222435 cites W2470234511 @default.
- W2956222435 cites W2556316013 @default.
- W2956222435 cites W2562973172 @default.
- W2956222435 cites W2567136063 @default.
- W2956222435 cites W2599634799 @default.
- W2956222435 cites W2793821032 @default.
- W2956222435 cites W2902936691 @default.
- W2956222435 cites W2951964187 @default.
- W2956222435 cites W2953135775 @default.
- W2956222435 cites W4255422539 @default.
- W2956222435 doi "https://doi.org/10.1021/acs.jcim.9b00379" @default.
- W2956222435 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31310532" @default.
- W2956222435 hasPublicationYear "2019" @default.
- W2956222435 type Work @default.
- W2956222435 sameAs 2956222435 @default.
- W2956222435 citedByCount "10" @default.
- W2956222435 countsByYear W29562224352019 @default.
- W2956222435 countsByYear W29562224352020 @default.
- W2956222435 countsByYear W29562224352021 @default.
- W2956222435 countsByYear W29562224352022 @default.
- W2956222435 countsByYear W29562224352023 @default.
- W2956222435 crossrefType "journal-article" @default.
- W2956222435 hasAuthorship W2956222435A5007309417 @default.
- W2956222435 hasAuthorship W2956222435A5027539046 @default.
- W2956222435 hasBestOaLocation W29562224352 @default.
- W2956222435 hasConcept C11413529 @default.
- W2956222435 hasConcept C114614502 @default.
- W2956222435 hasConcept C147597530 @default.
- W2956222435 hasConcept C149635348 @default.
- W2956222435 hasConcept C152365726 @default.
- W2956222435 hasConcept C159467904 @default.
- W2956222435 hasConcept C164226766 @default.
- W2956222435 hasConcept C178790620 @default.
- W2956222435 hasConcept C185592680 @default.
- W2956222435 hasConcept C186060115 @default.
- W2956222435 hasConcept C2991951333 @default.
- W2956222435 hasConcept C32909587 @default.
- W2956222435 hasConcept C33347731 @default.
- W2956222435 hasConcept C33923547 @default.
- W2956222435 hasConcept C41008148 @default.
- W2956222435 hasConcept C45374587 @default.
- W2956222435 hasConcept C58312451 @default.
- W2956222435 hasConcept C80444323 @default.
- W2956222435 hasConcept C86803240 @default.
- W2956222435 hasConceptScore W2956222435C11413529 @default.
- W2956222435 hasConceptScore W2956222435C114614502 @default.
- W2956222435 hasConceptScore W2956222435C147597530 @default.
- W2956222435 hasConceptScore W2956222435C149635348 @default.
- W2956222435 hasConceptScore W2956222435C152365726 @default.
- W2956222435 hasConceptScore W2956222435C159467904 @default.
- W2956222435 hasConceptScore W2956222435C164226766 @default.
- W2956222435 hasConceptScore W2956222435C178790620 @default.
- W2956222435 hasConceptScore W2956222435C185592680 @default.