Matches in SemOpenAlex for { <https://semopenalex.org/work/W2956228567> ?p ?o ?g. }
- W2956228567 endingPage "1309" @default.
- W2956228567 startingPage "1301" @default.
- W2956228567 abstract "The development of decision support systems for pathology and their deployment in clinical practice have been hindered by the need for large manually annotated datasets. To overcome this problem, we present a multiple instance learning-based deep learning system that uses only the reported diagnoses as labels for training, thereby avoiding expensive and time-consuming pixel-wise manual annotations. We evaluated this framework at scale on a dataset of 44,732 whole slide images from 15,187 patients without any form of data curation. Tests on prostate cancer, basal cell carcinoma and breast cancer metastases to axillary lymph nodes resulted in areas under the curve above 0.98 for all cancer types. Its clinical application would allow pathologists to exclude 65-75% of slides while retaining 100% sensitivity. Our results show that this system has the ability to train accurate classification models at unprecedented scale, laying the foundation for the deployment of computational decision support systems in clinical practice." @default.
- W2956228567 created "2019-07-23" @default.
- W2956228567 creator A5010536553 @default.
- W2956228567 creator A5014100513 @default.
- W2956228567 creator A5016615488 @default.
- W2956228567 creator A5027415725 @default.
- W2956228567 creator A5030093215 @default.
- W2956228567 creator A5063015203 @default.
- W2956228567 creator A5067002655 @default.
- W2956228567 creator A5076369513 @default.
- W2956228567 creator A5078116934 @default.
- W2956228567 creator A5080183722 @default.
- W2956228567 date "2019-07-15" @default.
- W2956228567 modified "2023-10-16" @default.
- W2956228567 title "Clinical-grade computational pathology using weakly supervised deep learning on whole slide images" @default.
- W2956228567 cites W1977653087 @default.
- W2956228567 cites W1978724855 @default.
- W2956228567 cites W2006617902 @default.
- W2956228567 cites W2011120797 @default.
- W2956228567 cites W2035955060 @default.
- W2956228567 cites W2040414046 @default.
- W2956228567 cites W2040600853 @default.
- W2956228567 cites W2108598243 @default.
- W2956228567 cites W2110119381 @default.
- W2956228567 cites W2152397906 @default.
- W2956228567 cites W2155982020 @default.
- W2956228567 cites W2194775991 @default.
- W2956228567 cites W2216754497 @default.
- W2956228567 cites W2234524709 @default.
- W2956228567 cites W2235523093 @default.
- W2956228567 cites W2269649163 @default.
- W2956228567 cites W2302302587 @default.
- W2956228567 cites W2328176404 @default.
- W2956228567 cites W2401520370 @default.
- W2956228567 cites W2504150216 @default.
- W2956228567 cites W2534856330 @default.
- W2956228567 cites W2581082771 @default.
- W2956228567 cites W2606095531 @default.
- W2956228567 cites W2658641687 @default.
- W2956228567 cites W2760946358 @default.
- W2956228567 cites W2761668583 @default.
- W2956228567 cites W2772723798 @default.
- W2956228567 cites W2794803511 @default.
- W2956228567 cites W2808210572 @default.
- W2956228567 cites W2886281300 @default.
- W2956228567 cites W2894398812 @default.
- W2956228567 cites W2919115771 @default.
- W2956228567 cites W4254687493 @default.
- W2956228567 doi "https://doi.org/10.1038/s41591-019-0508-1" @default.
- W2956228567 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7418463" @default.
- W2956228567 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31308507" @default.
- W2956228567 hasPublicationYear "2019" @default.
- W2956228567 type Work @default.
- W2956228567 sameAs 2956228567 @default.
- W2956228567 citedByCount "1218" @default.
- W2956228567 countsByYear W29562285672018 @default.
- W2956228567 countsByYear W29562285672019 @default.
- W2956228567 countsByYear W29562285672020 @default.
- W2956228567 countsByYear W29562285672021 @default.
- W2956228567 countsByYear W29562285672022 @default.
- W2956228567 countsByYear W29562285672023 @default.
- W2956228567 crossrefType "journal-article" @default.
- W2956228567 hasAuthorship W2956228567A5010536553 @default.
- W2956228567 hasAuthorship W2956228567A5014100513 @default.
- W2956228567 hasAuthorship W2956228567A5016615488 @default.
- W2956228567 hasAuthorship W2956228567A5027415725 @default.
- W2956228567 hasAuthorship W2956228567A5030093215 @default.
- W2956228567 hasAuthorship W2956228567A5063015203 @default.
- W2956228567 hasAuthorship W2956228567A5067002655 @default.
- W2956228567 hasAuthorship W2956228567A5076369513 @default.
- W2956228567 hasAuthorship W2956228567A5078116934 @default.
- W2956228567 hasAuthorship W2956228567A5080183722 @default.
- W2956228567 hasBestOaLocation W29562285672 @default.
- W2956228567 hasConcept C105339364 @default.
- W2956228567 hasConcept C108583219 @default.
- W2956228567 hasConcept C111919701 @default.
- W2956228567 hasConcept C119857082 @default.
- W2956228567 hasConcept C121608353 @default.
- W2956228567 hasConcept C126322002 @default.
- W2956228567 hasConcept C142724271 @default.
- W2956228567 hasConcept C154945302 @default.
- W2956228567 hasConcept C19527891 @default.
- W2956228567 hasConcept C205649164 @default.
- W2956228567 hasConcept C2778755073 @default.
- W2956228567 hasConcept C2779974597 @default.
- W2956228567 hasConcept C2780192828 @default.
- W2956228567 hasConcept C41008148 @default.
- W2956228567 hasConcept C512399662 @default.
- W2956228567 hasConcept C534262118 @default.
- W2956228567 hasConcept C58640448 @default.
- W2956228567 hasConcept C71924100 @default.
- W2956228567 hasConceptScore W2956228567C105339364 @default.
- W2956228567 hasConceptScore W2956228567C108583219 @default.
- W2956228567 hasConceptScore W2956228567C111919701 @default.
- W2956228567 hasConceptScore W2956228567C119857082 @default.
- W2956228567 hasConceptScore W2956228567C121608353 @default.
- W2956228567 hasConceptScore W2956228567C126322002 @default.
- W2956228567 hasConceptScore W2956228567C142724271 @default.