Matches in SemOpenAlex for { <https://semopenalex.org/work/W2956231845> ?p ?o ?g. }
- W2956231845 endingPage "2880" @default.
- W2956231845 startingPage "2868" @default.
- W2956231845 abstract "The processing quality of laser cladding is a topic of interest to laser machine manufacturers. The management of various experimental data and process quality of the laser machine can effectively guide the customer to better adjust the processing parameters. This study finds that the processing quality of laser cladding is related to the signal of the coaxial image. Therefore, this study uses a machine learning method to establish a model of coaxial image and laser processing quality. The study does not merely implement a single machine learning method but also compares various machine learning algorithms. Convolutional neural networks and autoencoders are implemented as algorithms for the feature extraction phase. Linear regression, random forest, support vector machine, and SoftMax neural networks are implemented as algorithms for classification. The receiver operating characteristic curve and the accuracy rate are the result indicators of this paper. The experimental results show that there is indeed a correlation between the laser processing quality and the coaxial image, and the algorithm in this study can effectively supervise the processing quality of laser cladding." @default.
- W2956231845 created "2019-07-23" @default.
- W2956231845 creator A5010616886 @default.
- W2956231845 creator A5023964593 @default.
- W2956231845 creator A5038102256 @default.
- W2956231845 creator A5073679391 @default.
- W2956231845 date "2020-06-01" @default.
- W2956231845 modified "2023-10-03" @default.
- W2956231845 title "Laser Cladding Quality Monitoring Using Coaxial Image Based on Machine Learning" @default.
- W2956231845 cites W1971659395 @default.
- W2956231845 cites W1985315692 @default.
- W2956231845 cites W1988195734 @default.
- W2956231845 cites W1994638318 @default.
- W2956231845 cites W1995906115 @default.
- W2956231845 cites W1996659192 @default.
- W2956231845 cites W2013039010 @default.
- W2956231845 cites W2019008260 @default.
- W2956231845 cites W2039710878 @default.
- W2956231845 cites W2041406732 @default.
- W2956231845 cites W2059665651 @default.
- W2956231845 cites W2081069811 @default.
- W2956231845 cites W2085678466 @default.
- W2956231845 cites W2087816063 @default.
- W2956231845 cites W2095332799 @default.
- W2956231845 cites W2141125801 @default.
- W2956231845 cites W2157825442 @default.
- W2956231845 cites W2161548576 @default.
- W2956231845 cites W2167742641 @default.
- W2956231845 cites W2263083964 @default.
- W2956231845 cites W2426723127 @default.
- W2956231845 cites W2516069610 @default.
- W2956231845 cites W2572569838 @default.
- W2956231845 cites W2574831037 @default.
- W2956231845 cites W2590932447 @default.
- W2956231845 cites W2595657631 @default.
- W2956231845 cites W2595750449 @default.
- W2956231845 cites W2603304445 @default.
- W2956231845 cites W2615058343 @default.
- W2956231845 cites W2617818785 @default.
- W2956231845 cites W2619304139 @default.
- W2956231845 cites W2726448631 @default.
- W2956231845 cites W2760277448 @default.
- W2956231845 cites W2766022917 @default.
- W2956231845 cites W2772386856 @default.
- W2956231845 cites W2774231091 @default.
- W2956231845 cites W2783760658 @default.
- W2956231845 cites W2789305678 @default.
- W2956231845 cites W2791139105 @default.
- W2956231845 cites W2796096089 @default.
- W2956231845 cites W2803595004 @default.
- W2956231845 cites W2810057162 @default.
- W2956231845 cites W2883495697 @default.
- W2956231845 cites W2884609870 @default.
- W2956231845 cites W2895879514 @default.
- W2956231845 cites W4212883601 @default.
- W2956231845 cites W4232048063 @default.
- W2956231845 cites W4298082496 @default.
- W2956231845 doi "https://doi.org/10.1109/tim.2019.2926878" @default.
- W2956231845 hasPublicationYear "2020" @default.
- W2956231845 type Work @default.
- W2956231845 sameAs 2956231845 @default.
- W2956231845 citedByCount "16" @default.
- W2956231845 countsByYear W29562318452019 @default.
- W2956231845 countsByYear W29562318452021 @default.
- W2956231845 countsByYear W29562318452022 @default.
- W2956231845 countsByYear W29562318452023 @default.
- W2956231845 crossrefType "journal-article" @default.
- W2956231845 hasAuthorship W2956231845A5010616886 @default.
- W2956231845 hasAuthorship W2956231845A5023964593 @default.
- W2956231845 hasAuthorship W2956231845A5038102256 @default.
- W2956231845 hasAuthorship W2956231845A5073679391 @default.
- W2956231845 hasConcept C104267543 @default.
- W2956231845 hasConcept C115961682 @default.
- W2956231845 hasConcept C119857082 @default.
- W2956231845 hasConcept C12267149 @default.
- W2956231845 hasConcept C154945302 @default.
- W2956231845 hasConcept C188441871 @default.
- W2956231845 hasConcept C41008148 @default.
- W2956231845 hasConcept C50644808 @default.
- W2956231845 hasConcept C51221625 @default.
- W2956231845 hasConcept C52622490 @default.
- W2956231845 hasConcept C76155785 @default.
- W2956231845 hasConcept C81363708 @default.
- W2956231845 hasConcept C84462506 @default.
- W2956231845 hasConcept C9390403 @default.
- W2956231845 hasConcept C9417928 @default.
- W2956231845 hasConceptScore W2956231845C104267543 @default.
- W2956231845 hasConceptScore W2956231845C115961682 @default.
- W2956231845 hasConceptScore W2956231845C119857082 @default.
- W2956231845 hasConceptScore W2956231845C12267149 @default.
- W2956231845 hasConceptScore W2956231845C154945302 @default.
- W2956231845 hasConceptScore W2956231845C188441871 @default.
- W2956231845 hasConceptScore W2956231845C41008148 @default.
- W2956231845 hasConceptScore W2956231845C50644808 @default.
- W2956231845 hasConceptScore W2956231845C51221625 @default.
- W2956231845 hasConceptScore W2956231845C52622490 @default.
- W2956231845 hasConceptScore W2956231845C76155785 @default.
- W2956231845 hasConceptScore W2956231845C81363708 @default.