Matches in SemOpenAlex for { <https://semopenalex.org/work/W2956311605> ?p ?o ?g. }
- W2956311605 abstract "Dynamic taint analysis (DTA) is widely used by various applications to track information flow during runtime execution. Existing DTA techniques use rule-based taint-propagation, which is neither accurate (i.e., high false positive) nor efficient (i.e., large runtime overhead). It is hard to specify taint rules for each operation while covering all corner cases correctly. Moreover, the overtaint and undertaint errors can accumulate during the propagation of taint information across multiple operations. Finally, rule-based propagation requires each operation to be inspected before applying the appropriate rules resulting in prohibitive performance overhead on large real-world applications. In this work, we propose NEUTAINT, a novel end-to-end approach to track information flow using neural program embeddings. The neural program embeddings model the target's programs computations taking place between taint sources and sinks, which automatically learns the information flow by observing a diverse set of execution traces. To perform lightweight and precise information flow analysis, we utilize saliency maps to reason about most influential sources for different sinks. NEUTAINT constructs two saliency maps, a popular machine learning approach to influence analysis, to summarize both coarse-grained and fine-grained information flow in the neural program embeddings. We compare NEUTAINT with 3 state-of-the-art dynamic taint analysis tools. The evaluation results show that NEUTAINT can achieve 68% accuracy, on average, which is 10% improvement while reducing 40 times runtime overhead over the second-best taint tool Libdft on 6 real world programs. NEUTAINT also achieves 61% more edge coverage when used for taint-guided fuzzing indicating the effectiveness of the identified influential bytes." @default.
- W2956311605 created "2019-07-23" @default.
- W2956311605 creator A5005317598 @default.
- W2956311605 creator A5016425387 @default.
- W2956311605 creator A5048358055 @default.
- W2956311605 creator A5064541855 @default.
- W2956311605 date "2019-07-08" @default.
- W2956311605 modified "2023-10-17" @default.
- W2956311605 title "Neutaint: Efficient Dynamic Taint Analysis with Neural Networks" @default.
- W2956311605 cites W1222699389 @default.
- W2956311605 cites W1507845365 @default.
- W2956311605 cites W1565113942 @default.
- W2956311605 cites W1821004526 @default.
- W2956311605 cites W1963971515 @default.
- W2956311605 cites W1976878954 @default.
- W2956311605 cites W1991074244 @default.
- W2956311605 cites W2003529494 @default.
- W2956311605 cites W2027718224 @default.
- W2956311605 cites W2037017056 @default.
- W2956311605 cites W2089745089 @default.
- W2956311605 cites W2102970979 @default.
- W2956311605 cites W2108747667 @default.
- W2956311605 cites W2125357166 @default.
- W2956311605 cites W2128985333 @default.
- W2956311605 cites W2129740354 @default.
- W2956311605 cites W2151135920 @default.
- W2956311605 cites W2180612164 @default.
- W2956311605 cites W2249980257 @default.
- W2956311605 cites W2294816372 @default.
- W2956311605 cites W2308618763 @default.
- W2956311605 cites W2401617229 @default.
- W2956311605 cites W2474318526 @default.
- W2956311605 cites W2514041296 @default.
- W2956311605 cites W2533311740 @default.
- W2956311605 cites W2550120381 @default.
- W2956311605 cites W2575109289 @default.
- W2956311605 cites W2583649498 @default.
- W2956311605 cites W2592125937 @default.
- W2956311605 cites W2601273560 @default.
- W2956311605 cites W2605202003 @default.
- W2956311605 cites W2613534458 @default.
- W2956311605 cites W2767634461 @default.
- W2956311605 cites W2769343112 @default.
- W2956311605 cites W2769748476 @default.
- W2956311605 cites W2790761820 @default.
- W2956311605 cites W2810533955 @default.
- W2956311605 cites W2814375691 @default.
- W2956311605 cites W2883395840 @default.
- W2956311605 cites W2946864865 @default.
- W2956311605 cites W2949197630 @default.
- W2956311605 cites W2950527759 @default.
- W2956311605 cites W2962851944 @default.
- W2956311605 cites W2963371736 @default.
- W2956311605 cites W2963499994 @default.
- W2956311605 cites W2963674831 @default.
- W2956311605 cites W2963937837 @default.
- W2956311605 cites W2964097210 @default.
- W2956311605 cites W2996489182 @default.
- W2956311605 cites W3101228802 @default.
- W2956311605 doi "https://doi.org/10.48550/arxiv.1907.03756" @default.
- W2956311605 hasPublicationYear "2019" @default.
- W2956311605 type Work @default.
- W2956311605 sameAs 2956311605 @default.
- W2956311605 citedByCount "1" @default.
- W2956311605 countsByYear W29563116052019 @default.
- W2956311605 crossrefType "posted-content" @default.
- W2956311605 hasAuthorship W2956311605A5005317598 @default.
- W2956311605 hasAuthorship W2956311605A5016425387 @default.
- W2956311605 hasAuthorship W2956311605A5048358055 @default.
- W2956311605 hasAuthorship W2956311605A5064541855 @default.
- W2956311605 hasBestOaLocation W29563116051 @default.
- W2956311605 hasConcept C111919701 @default.
- W2956311605 hasConcept C113775141 @default.
- W2956311605 hasConcept C119857082 @default.
- W2956311605 hasConcept C124101348 @default.
- W2956311605 hasConcept C138885662 @default.
- W2956311605 hasConcept C154945302 @default.
- W2956311605 hasConcept C177264268 @default.
- W2956311605 hasConcept C199360897 @default.
- W2956311605 hasConcept C2777904410 @default.
- W2956311605 hasConcept C2779136372 @default.
- W2956311605 hasConcept C2779960059 @default.
- W2956311605 hasConcept C41008148 @default.
- W2956311605 hasConcept C41895202 @default.
- W2956311605 hasConcept C50644808 @default.
- W2956311605 hasConcept C63116202 @default.
- W2956311605 hasConcept C89992363 @default.
- W2956311605 hasConceptScore W2956311605C111919701 @default.
- W2956311605 hasConceptScore W2956311605C113775141 @default.
- W2956311605 hasConceptScore W2956311605C119857082 @default.
- W2956311605 hasConceptScore W2956311605C124101348 @default.
- W2956311605 hasConceptScore W2956311605C138885662 @default.
- W2956311605 hasConceptScore W2956311605C154945302 @default.
- W2956311605 hasConceptScore W2956311605C177264268 @default.
- W2956311605 hasConceptScore W2956311605C199360897 @default.
- W2956311605 hasConceptScore W2956311605C2777904410 @default.
- W2956311605 hasConceptScore W2956311605C2779136372 @default.
- W2956311605 hasConceptScore W2956311605C2779960059 @default.
- W2956311605 hasConceptScore W2956311605C41008148 @default.
- W2956311605 hasConceptScore W2956311605C41895202 @default.