Matches in SemOpenAlex for { <https://semopenalex.org/work/W2956335072> ?p ?o ?g. }
- W2956335072 abstract "Cross-media retrieval is to return the results of various media types corresponding to the query of any media type. Existing researches generally focus on coarse-grained cross-media retrieval. When users submit an image of Slaty-backed Gull as a query, coarse-grained cross-media retrieval treats it as Bird, so that users can only get the results of Bird, which may include other bird species with similar appearance (image and video), descriptions (text) or sounds (audio), such as Herring Gull. Such coarse-grained cross-media retrieval is not consistent with human lifestyle, where we generally have the fine-grained requirement of returning the exactly relevant results of Slaty-backed Gull instead of Herring Gull. However, few researches focus on fine-grained cross-media retrieval, which is a highly challenging and practical task. Therefore, in this paper, we first construct a new benchmark for fine-grained cross-media retrieval, which consists of 200 fine-grained subcategories of the Bird, and contains 4 media types, including image, text, video and audio. To the best of our knowledge, it is the first benchmark with 4 media types for fine-grained cross-media retrieval. Then, we propose a uniform deep model, namely FGCrossNet, which simultaneously learns 4 types of media without discriminative treatments. We jointly consider three constraints for better common representation learning: classification constraint ensures the learning of discriminative features, center constraint ensures the compactness characteristic of the features of the same subcategory, and ranking constraint ensures the sparsity characteristic of the features of different subcategories. Extensive experiments verify the usefulness of the new benchmark and the effectiveness of our FGCrossNet. They will be made available at https://github.com/PKU-ICST-MIPL/FGCrossNet_ACMMM2019." @default.
- W2956335072 created "2019-07-23" @default.
- W2956335072 creator A5017511861 @default.
- W2956335072 creator A5047811387 @default.
- W2956335072 creator A5068675597 @default.
- W2956335072 date "2019-10-15" @default.
- W2956335072 modified "2023-09-30" @default.
- W2956335072 title "A New Benchmark and Approach for Fine-grained Cross-media Retrieval" @default.
- W2956335072 cites W2013535308 @default.
- W2956335072 cites W2064675550 @default.
- W2956335072 cites W2106277773 @default.
- W2956335072 cites W2108598243 @default.
- W2956335072 cites W2185175083 @default.
- W2956335072 cites W2194775991 @default.
- W2956335072 cites W2526479943 @default.
- W2956335072 cites W2606377603 @default.
- W2956335072 cites W2606965845 @default.
- W2956335072 cites W2740755807 @default.
- W2956335072 cites W2765440071 @default.
- W2956335072 cites W2894608918 @default.
- W2956335072 cites W2940925558 @default.
- W2956335072 cites W2962964995 @default.
- W2956335072 cites W2963467339 @default.
- W2956335072 cites W3099903704 @default.
- W2956335072 doi "https://doi.org/10.1145/3343031.3350974" @default.
- W2956335072 hasPublicationYear "2019" @default.
- W2956335072 type Work @default.
- W2956335072 sameAs 2956335072 @default.
- W2956335072 citedByCount "47" @default.
- W2956335072 countsByYear W29563350722020 @default.
- W2956335072 countsByYear W29563350722021 @default.
- W2956335072 countsByYear W29563350722022 @default.
- W2956335072 countsByYear W29563350722023 @default.
- W2956335072 crossrefType "proceedings-article" @default.
- W2956335072 hasAuthorship W2956335072A5017511861 @default.
- W2956335072 hasAuthorship W2956335072A5047811387 @default.
- W2956335072 hasAuthorship W2956335072A5068675597 @default.
- W2956335072 hasBestOaLocation W29563350722 @default.
- W2956335072 hasConcept C120665830 @default.
- W2956335072 hasConcept C121332964 @default.
- W2956335072 hasConcept C13280743 @default.
- W2956335072 hasConcept C154945302 @default.
- W2956335072 hasConcept C17744445 @default.
- W2956335072 hasConcept C185798385 @default.
- W2956335072 hasConcept C189430467 @default.
- W2956335072 hasConcept C192209626 @default.
- W2956335072 hasConcept C199360897 @default.
- W2956335072 hasConcept C199539241 @default.
- W2956335072 hasConcept C202444582 @default.
- W2956335072 hasConcept C205649164 @default.
- W2956335072 hasConcept C23123220 @default.
- W2956335072 hasConcept C2524010 @default.
- W2956335072 hasConcept C2776036281 @default.
- W2956335072 hasConcept C2776359362 @default.
- W2956335072 hasConcept C2779290800 @default.
- W2956335072 hasConcept C2780617661 @default.
- W2956335072 hasConcept C2780801425 @default.
- W2956335072 hasConcept C2781119296 @default.
- W2956335072 hasConcept C2909199610 @default.
- W2956335072 hasConcept C2909208804 @default.
- W2956335072 hasConcept C33923547 @default.
- W2956335072 hasConcept C41008148 @default.
- W2956335072 hasConcept C505870484 @default.
- W2956335072 hasConcept C59404180 @default.
- W2956335072 hasConcept C86803240 @default.
- W2956335072 hasConcept C94625758 @default.
- W2956335072 hasConcept C97931131 @default.
- W2956335072 hasConceptScore W2956335072C120665830 @default.
- W2956335072 hasConceptScore W2956335072C121332964 @default.
- W2956335072 hasConceptScore W2956335072C13280743 @default.
- W2956335072 hasConceptScore W2956335072C154945302 @default.
- W2956335072 hasConceptScore W2956335072C17744445 @default.
- W2956335072 hasConceptScore W2956335072C185798385 @default.
- W2956335072 hasConceptScore W2956335072C189430467 @default.
- W2956335072 hasConceptScore W2956335072C192209626 @default.
- W2956335072 hasConceptScore W2956335072C199360897 @default.
- W2956335072 hasConceptScore W2956335072C199539241 @default.
- W2956335072 hasConceptScore W2956335072C202444582 @default.
- W2956335072 hasConceptScore W2956335072C205649164 @default.
- W2956335072 hasConceptScore W2956335072C23123220 @default.
- W2956335072 hasConceptScore W2956335072C2524010 @default.
- W2956335072 hasConceptScore W2956335072C2776036281 @default.
- W2956335072 hasConceptScore W2956335072C2776359362 @default.
- W2956335072 hasConceptScore W2956335072C2779290800 @default.
- W2956335072 hasConceptScore W2956335072C2780617661 @default.
- W2956335072 hasConceptScore W2956335072C2780801425 @default.
- W2956335072 hasConceptScore W2956335072C2781119296 @default.
- W2956335072 hasConceptScore W2956335072C2909199610 @default.
- W2956335072 hasConceptScore W2956335072C2909208804 @default.
- W2956335072 hasConceptScore W2956335072C33923547 @default.
- W2956335072 hasConceptScore W2956335072C41008148 @default.
- W2956335072 hasConceptScore W2956335072C505870484 @default.
- W2956335072 hasConceptScore W2956335072C59404180 @default.
- W2956335072 hasConceptScore W2956335072C86803240 @default.
- W2956335072 hasConceptScore W2956335072C94625758 @default.
- W2956335072 hasConceptScore W2956335072C97931131 @default.
- W2956335072 hasLocation W29563350721 @default.
- W2956335072 hasLocation W29563350722 @default.
- W2956335072 hasLocation W29563350723 @default.
- W2956335072 hasOpenAccess W2956335072 @default.