Matches in SemOpenAlex for { <https://semopenalex.org/work/W2956390618> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W2956390618 endingPage "50" @default.
- W2956390618 startingPage "34" @default.
- W2956390618 abstract "Code smell is an inherent property of software that results in design problems which makes the software hard to extend, understand, and maintain. In the literature, several tools are used to detect code smell that are informally defined or subjective in nature due to varying results of the code smell. To resolve this, machine leaning (ML) techniques are proposed and learn to distinguish the characteristics of smelly and non-smelly code elements (classes or methods). However, the dataset constructed by the ML techniques are based on the tools and manually validated code smell samples. In this article, instead of using tools and manual validation, the authors considered detection rules for identifying the smell then applied unsupervised learning for validation to construct two smell datasets. Then, applied classification algorithms are used on the datasets to detect the code smells. The researchers found that all algorithms have achieved high performance in terms of accuracy, F-measure and area under ROC, yet the tree-based classifiers are performing better than other classifiers." @default.
- W2956390618 created "2019-07-23" @default.
- W2956390618 creator A5008608330 @default.
- W2956390618 creator A5091527672 @default.
- W2956390618 date "2019-04-01" @default.
- W2956390618 modified "2023-09-27" @default.
- W2956390618 title "Detection of Shotgun Surgery and Message Chain Code Smells using Machine Learning Techniques" @default.
- W2956390618 cites W1670263352 @default.
- W2956390618 cites W2072380688 @default.
- W2956390618 cites W2081727032 @default.
- W2956390618 cites W2095938258 @default.
- W2956390618 cites W2113867035 @default.
- W2956390618 cites W2118978333 @default.
- W2956390618 cites W2133990480 @default.
- W2956390618 cites W2147956392 @default.
- W2956390618 cites W2158698691 @default.
- W2956390618 cites W2911964244 @default.
- W2956390618 cites W4244238212 @default.
- W2956390618 cites W649920412 @default.
- W2956390618 cites W1785944873 @default.
- W2956390618 doi "https://doi.org/10.4018/ijrsda.2019040103" @default.
- W2956390618 hasPublicationYear "2019" @default.
- W2956390618 type Work @default.
- W2956390618 sameAs 2956390618 @default.
- W2956390618 citedByCount "7" @default.
- W2956390618 countsByYear W29563906182021 @default.
- W2956390618 countsByYear W29563906182022 @default.
- W2956390618 countsByYear W29563906182023 @default.
- W2956390618 crossrefType "journal-article" @default.
- W2956390618 hasAuthorship W2956390618A5008608330 @default.
- W2956390618 hasAuthorship W2956390618A5091527672 @default.
- W2956390618 hasBestOaLocation W29563906181 @default.
- W2956390618 hasConcept C117447612 @default.
- W2956390618 hasConcept C119857082 @default.
- W2956390618 hasConcept C124101348 @default.
- W2956390618 hasConcept C133237599 @default.
- W2956390618 hasConcept C154945302 @default.
- W2956390618 hasConcept C177264268 @default.
- W2956390618 hasConcept C199360897 @default.
- W2956390618 hasConcept C207850805 @default.
- W2956390618 hasConcept C2776760102 @default.
- W2956390618 hasConcept C2777904410 @default.
- W2956390618 hasConcept C2780801425 @default.
- W2956390618 hasConcept C41008148 @default.
- W2956390618 hasConcept C43126263 @default.
- W2956390618 hasConcept C529173508 @default.
- W2956390618 hasConceptScore W2956390618C117447612 @default.
- W2956390618 hasConceptScore W2956390618C119857082 @default.
- W2956390618 hasConceptScore W2956390618C124101348 @default.
- W2956390618 hasConceptScore W2956390618C133237599 @default.
- W2956390618 hasConceptScore W2956390618C154945302 @default.
- W2956390618 hasConceptScore W2956390618C177264268 @default.
- W2956390618 hasConceptScore W2956390618C199360897 @default.
- W2956390618 hasConceptScore W2956390618C207850805 @default.
- W2956390618 hasConceptScore W2956390618C2776760102 @default.
- W2956390618 hasConceptScore W2956390618C2777904410 @default.
- W2956390618 hasConceptScore W2956390618C2780801425 @default.
- W2956390618 hasConceptScore W2956390618C41008148 @default.
- W2956390618 hasConceptScore W2956390618C43126263 @default.
- W2956390618 hasConceptScore W2956390618C529173508 @default.
- W2956390618 hasIssue "2" @default.
- W2956390618 hasLocation W29563906181 @default.
- W2956390618 hasOpenAccess W2956390618 @default.
- W2956390618 hasPrimaryLocation W29563906181 @default.
- W2956390618 hasRelatedWork W2068321882 @default.
- W2956390618 hasRelatedWork W2579500971 @default.
- W2956390618 hasRelatedWork W2796404405 @default.
- W2956390618 hasRelatedWork W2919470919 @default.
- W2956390618 hasRelatedWork W3163912080 @default.
- W2956390618 hasRelatedWork W4285023699 @default.
- W2956390618 hasRelatedWork W4308089064 @default.
- W2956390618 hasRelatedWork W4310113603 @default.
- W2956390618 hasRelatedWork W4312795669 @default.
- W2956390618 hasRelatedWork W4321636993 @default.
- W2956390618 hasVolume "6" @default.
- W2956390618 isParatext "false" @default.
- W2956390618 isRetracted "false" @default.
- W2956390618 magId "2956390618" @default.
- W2956390618 workType "article" @default.