Matches in SemOpenAlex for { <https://semopenalex.org/work/W2956398107> ?p ?o ?g. }
- W2956398107 endingPage "116019" @default.
- W2956398107 startingPage "116019" @default.
- W2956398107 abstract "Component models such as PCA and ICA are often used to reduce neuroimaging data into a smaller number of components, which are thought to reflect latent brain networks. When data from multiple subjects are available, the components are typically estimated simultaneously (i.e., for all subjects combined) using either tensor ICA or group ICA. As we demonstrate in this paper, neither of these approaches is ideal if one hopes to find latent brain networks that cross-validate to new samples of data. Specifically, we note that the tensor ICA model is too rigid to capture real-world heterogeneity in the component time courses, whereas the group ICA approach is too flexible to uniquely identify latent brain networks. For multi-subject component analysis, we recommend comparing a hierarchy of simultaneous component analysis (SCA) models. Our proposed model hierarchy includes a flexible variant of the SCA framework (the Parafac2 model), which is able to both (i) model heterogeneity in the component time courses, and (ii) uniquely identify latent brain networks. Furthermore, we propose cross-validation methods to tune the relevant model parameters, which reduces the potential of over-fitting the observed data. Using simulated and real data examples, we demonstrate the benefits of the proposed approach for finding credible components that reveal interpretable individual and group differences in latent brain networks." @default.
- W2956398107 created "2019-07-23" @default.
- W2956398107 creator A5022446382 @default.
- W2956398107 creator A5032261659 @default.
- W2956398107 date "2019-11-01" @default.
- W2956398107 modified "2023-10-09" @default.
- W2956398107 title "Exploring individual and group differences in latent brain networks using cross-validated simultaneous component analysis" @default.
- W2956398107 cites W1002562413 @default.
- W2956398107 cites W1519770448 @default.
- W2956398107 cites W1828334443 @default.
- W2956398107 cites W1907517779 @default.
- W2956398107 cites W1963826206 @default.
- W2956398107 cites W1969082792 @default.
- W2956398107 cites W1974403130 @default.
- W2956398107 cites W1978680118 @default.
- W2956398107 cites W1979285635 @default.
- W2956398107 cites W1980951035 @default.
- W2956398107 cites W1982524534 @default.
- W2956398107 cites W1988083567 @default.
- W2956398107 cites W1994219736 @default.
- W2956398107 cites W1996348120 @default.
- W2956398107 cites W1997320786 @default.
- W2956398107 cites W1998039677 @default.
- W2956398107 cites W2000215628 @default.
- W2956398107 cites W2001964924 @default.
- W2956398107 cites W2004026774 @default.
- W2956398107 cites W2006008581 @default.
- W2956398107 cites W2008114373 @default.
- W2956398107 cites W2011667957 @default.
- W2956398107 cites W2012702426 @default.
- W2956398107 cites W2013115634 @default.
- W2956398107 cites W2016444985 @default.
- W2956398107 cites W2022531563 @default.
- W2956398107 cites W2024165284 @default.
- W2956398107 cites W2029129765 @default.
- W2956398107 cites W2030349076 @default.
- W2956398107 cites W2034108143 @default.
- W2956398107 cites W2038028644 @default.
- W2956398107 cites W2040805429 @default.
- W2956398107 cites W2042406701 @default.
- W2956398107 cites W2047680880 @default.
- W2956398107 cites W2048409960 @default.
- W2956398107 cites W2050853365 @default.
- W2956398107 cites W2057503509 @default.
- W2956398107 cites W2064227455 @default.
- W2956398107 cites W2066373878 @default.
- W2956398107 cites W2069913666 @default.
- W2956398107 cites W2073834090 @default.
- W2956398107 cites W2077298558 @default.
- W2956398107 cites W2081680057 @default.
- W2956398107 cites W2082627290 @default.
- W2956398107 cites W2082906925 @default.
- W2956398107 cites W2088012272 @default.
- W2956398107 cites W2088477804 @default.
- W2956398107 cites W2096377479 @default.
- W2956398107 cites W2098098075 @default.
- W2956398107 cites W2099741732 @default.
- W2956398107 cites W2101815756 @default.
- W2956398107 cites W2107483979 @default.
- W2956398107 cites W2108384452 @default.
- W2956398107 cites W2109616123 @default.
- W2956398107 cites W2112451877 @default.
- W2956398107 cites W2113506774 @default.
- W2956398107 cites W2116484132 @default.
- W2956398107 cites W2133097426 @default.
- W2956398107 cites W2137526583 @default.
- W2956398107 cites W2141224535 @default.
- W2956398107 cites W2146610201 @default.
- W2956398107 cites W2147203080 @default.
- W2956398107 cites W2150059498 @default.
- W2956398107 cites W2151635492 @default.
- W2956398107 cites W2154325203 @default.
- W2956398107 cites W2160172778 @default.
- W2956398107 cites W2163093301 @default.
- W2956398107 cites W2164001739 @default.
- W2956398107 cites W2167838035 @default.
- W2956398107 cites W2169772094 @default.
- W2956398107 cites W2171791768 @default.
- W2956398107 cites W2240455252 @default.
- W2956398107 cites W2258054274 @default.
- W2956398107 cites W2294798173 @default.
- W2956398107 cites W2538746112 @default.
- W2956398107 cites W2561915573 @default.
- W2956398107 cites W2567460568 @default.
- W2956398107 cites W2588063580 @default.
- W2956398107 cites W2951881727 @default.
- W2956398107 cites W343007671 @default.
- W2956398107 cites W4237377395 @default.
- W2956398107 cites W4238805501 @default.
- W2956398107 cites W4293107615 @default.
- W2956398107 doi "https://doi.org/10.1016/j.neuroimage.2019.116019" @default.
- W2956398107 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6765442" @default.
- W2956398107 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31319181" @default.
- W2956398107 hasPublicationYear "2019" @default.
- W2956398107 type Work @default.
- W2956398107 sameAs 2956398107 @default.
- W2956398107 citedByCount "3" @default.
- W2956398107 countsByYear W29563981072022 @default.