Matches in SemOpenAlex for { <https://semopenalex.org/work/W2956411102> ?p ?o ?g. }
- W2956411102 endingPage "113935" @default.
- W2956411102 startingPage "113935" @default.
- W2956411102 abstract "Jupiter’s upper troposphere and stratosphere are host to a rich dynamical and chemical activity. This modulates the thermal structure and distribution of trace species and aerosols, which, in turn, impact the atmospheric radiative budget and dynamics. In this paper, we present a computationally efficient 1-D seasonal radiative model, with convective adjustment, of Jupiter’s atmosphere. Our model takes into account radiative forcings from the main hydrocarbons (methane, ethane, acetylene), ammonia, collision-induced absorption, several cloud and haze layers and an internal heat flux. We parametrize four tropospheric cloud and haze layers. Three of them (one tropospheric cloud near 800 mbar, one upper tropospheric haze, one stratospheric haze) are set to be uniform with latitude. On the contrary, we prescribe the spatial distribution of another UV-absorbing “polar” stratospheric haze comprising fractal aggregates based on published observational constraints, as their concentration varies significantly with latitude. We detail sensitivity studies of the equilibrium temperature profile to several parameters (hydrocarbon abundances, cloud particle sizes and optical depths, optical properties of the stratospheric polar haze, etc.). We then discuss the expected seasonal, vertical and meridional temperature variations in Jupiter’s atmosphere and compare the modeled thermal structure to that derived from Cassini and ground-based thermal infrared observations. We find that the equilibrium temperature in the 5–30 mbar pressure range is very sensitive to the chosen stratospheric haze optical properties, sizes and number of monomers. One of the three sets of optical properties tested yields equilibrium temperatures that match well, to first order, the observed ones. In this scenario, the polar haze significantly warms the lower stratosphere (10–30 mbar) by up to 20 K at latitudes 45–60°, and reproduces an observed north–south asymmetry in stratospheric temperature. The polar haze also acts to shorten significantly the radiative timescales, estimated by our model to 100 (Earth) days at the 10-mbar level. At pressures lower than 3 mbar, our modeled temperatures systematically underestimate the observed ones by ∼5 K. This might suggest that other processes, such as dynamical heating by wave breaking or by eddies, or a coupling with thermospheric circulation, play an important role. An alternate possibility is that the uncertainty on the abundance of hydrocarbons is responsible for this mismatch. In the troposphere, we can only match the observed lack of meridional gradient of temperature by varying the internal heat flux with latitude. We then exploit knowledge of heating and cooling rates (using our radiative seasonal model combined to observational constraints on the temperature) to diagnose the residual-mean circulation in Jupiter’s stratosphere. This is done under the assumption that the eddy heat flux convergence term is negligible. In the Earth’s stratosphere, the residual-mean circulation obtained with this method represents well, on a seasonal scale, the transport of tracers in regions where wave breaking and dissipation are weak. However, on Jupiter, in the lower stratosphere (5–30 mbar), the residual-mean circulation strongly depends on the assumed properties of the stratospheric haze. Our main conclusion is that it is crucial to improve our knowledge on the different radiative forcing terms (in particular regarding the stratospheric haze properties) to increase our confidence in the estimated circulation. By extension, this will also be crucial for future 3D GCM studies." @default.
- W2956411102 created "2019-07-23" @default.
- W2956411102 creator A5007598001 @default.
- W2956411102 creator A5044704721 @default.
- W2956411102 creator A5060530797 @default.
- W2956411102 creator A5091884142 @default.
- W2956411102 date "2020-11-01" @default.
- W2956411102 modified "2023-10-13" @default.
- W2956411102 title "Radiative-equilibrium model of Jupiter’s atmosphere and application to estimating stratospheric circulations" @default.
- W2956411102 cites W1112158574 @default.
- W2956411102 cites W1555523415 @default.
- W2956411102 cites W1567558404 @default.
- W2956411102 cites W1943940227 @default.
- W2956411102 cites W1966991386 @default.
- W2956411102 cites W1967054194 @default.
- W2956411102 cites W1970339845 @default.
- W2956411102 cites W1973988821 @default.
- W2956411102 cites W1978446652 @default.
- W2956411102 cites W1980048945 @default.
- W2956411102 cites W1983233022 @default.
- W2956411102 cites W1984695169 @default.
- W2956411102 cites W1985777158 @default.
- W2956411102 cites W1986052233 @default.
- W2956411102 cites W1987383553 @default.
- W2956411102 cites W1994987090 @default.
- W2956411102 cites W1996213930 @default.
- W2956411102 cites W1998691206 @default.
- W2956411102 cites W2003429967 @default.
- W2956411102 cites W2004840453 @default.
- W2956411102 cites W2005334558 @default.
- W2956411102 cites W2005470323 @default.
- W2956411102 cites W2006953709 @default.
- W2956411102 cites W2008777117 @default.
- W2956411102 cites W2009963240 @default.
- W2956411102 cites W2011354068 @default.
- W2956411102 cites W2014203933 @default.
- W2956411102 cites W2014276744 @default.
- W2956411102 cites W2015290489 @default.
- W2956411102 cites W2024748895 @default.
- W2956411102 cites W2027392003 @default.
- W2956411102 cites W2030126702 @default.
- W2956411102 cites W2030930689 @default.
- W2956411102 cites W2031442685 @default.
- W2956411102 cites W2031912881 @default.
- W2956411102 cites W2032877560 @default.
- W2956411102 cites W2034049985 @default.
- W2956411102 cites W2034606276 @default.
- W2956411102 cites W2037222065 @default.
- W2956411102 cites W2041607647 @default.
- W2956411102 cites W2050834893 @default.
- W2956411102 cites W2052447352 @default.
- W2956411102 cites W2055236202 @default.
- W2956411102 cites W2059239785 @default.
- W2956411102 cites W2061042496 @default.
- W2956411102 cites W2062625349 @default.
- W2956411102 cites W2068061481 @default.
- W2956411102 cites W2072295251 @default.
- W2956411102 cites W2078381802 @default.
- W2956411102 cites W2079911006 @default.
- W2956411102 cites W2083282986 @default.
- W2956411102 cites W2083753279 @default.
- W2956411102 cites W2083940878 @default.
- W2956411102 cites W2100446215 @default.
- W2956411102 cites W2117018191 @default.
- W2956411102 cites W2130551832 @default.
- W2956411102 cites W2133010475 @default.
- W2956411102 cites W2133151341 @default.
- W2956411102 cites W2135455558 @default.
- W2956411102 cites W2140048514 @default.
- W2956411102 cites W2146814365 @default.
- W2956411102 cites W2146916780 @default.
- W2956411102 cites W2148957200 @default.
- W2956411102 cites W2158824498 @default.
- W2956411102 cites W2170184931 @default.
- W2956411102 cites W2232024866 @default.
- W2956411102 cites W2338599004 @default.
- W2956411102 cites W2430504495 @default.
- W2956411102 cites W2547185241 @default.
- W2956411102 cites W2570902865 @default.
- W2956411102 cites W2618001160 @default.
- W2956411102 cites W2619469512 @default.
- W2956411102 cites W2619864731 @default.
- W2956411102 cites W2767158462 @default.
- W2956411102 cites W2778614537 @default.
- W2956411102 cites W2780592753 @default.
- W2956411102 cites W2794194779 @default.
- W2956411102 cites W2796987870 @default.
- W2956411102 cites W2807421882 @default.
- W2956411102 cites W2890062355 @default.
- W2956411102 cites W2905416883 @default.
- W2956411102 cites W2965673579 @default.
- W2956411102 cites W3101056309 @default.
- W2956411102 cites W3121429657 @default.
- W2956411102 cites W3122513843 @default.
- W2956411102 cites W3162940152 @default.
- W2956411102 cites W4254012834 @default.
- W2956411102 doi "https://doi.org/10.1016/j.icarus.2020.113935" @default.
- W2956411102 hasPublicationYear "2020" @default.