Matches in SemOpenAlex for { <https://semopenalex.org/work/W2956718877> ?p ?o ?g. }
- W2956718877 endingPage "111772" @default.
- W2956718877 startingPage "111772" @default.
- W2956718877 abstract "The potential of long short-term memory network on ultra-short term wind speed forecast attracted attentions of researchers in recent years. Extending a probabilistic long short-term memory network model to provide an uncertainty estimation than to make a point forecast is more valuable in practice. However, due to complex recurrent structure and feedback algorithm, large scale ensemble forecast based on resampling faces great challenges in reality. Instead, a reliable forecast method needs to be devised. Gaussian process regression is a probabilistic regression model based on Gaussian Process prior. It is reasonable to integrate Gaussian process regression with long short-term memory network for probabilistic wind speed forecast to leverage the superior fitting ability of the deep learning methods and to maintain the probability characteristics of Gaussian process regression. Hence, avoid the repeated training and heavy parameter optimization. The method is evaluated for wind speed forecast using the monitoring dataset provided by the National Wind Energy Technology Center. The results indicated that the proposed method improves the point forecast accuracy by up to 17.2%, and improves the interval forecast accuracy by up to 18.5% compared to state-of-the-art models. This study is of great significance for improving the accuracy and reliability of wind speed prediction and the sustainable development of new energy sources." @default.
- W2956718877 created "2019-07-23" @default.
- W2956718877 creator A5021355100 @default.
- W2956718877 creator A5032198757 @default.
- W2956718877 creator A5065414881 @default.
- W2956718877 creator A5084808312 @default.
- W2956718877 creator A5089748140 @default.
- W2956718877 date "2019-10-01" @default.
- W2956718877 modified "2023-10-16" @default.
- W2956718877 title "Gaussian mixture model coupled recurrent neural networks for wind speed interval forecast" @default.
- W2956718877 cites W1495476169 @default.
- W2956718877 cites W1689711448 @default.
- W2956718877 cites W2039306928 @default.
- W2956718877 cites W2114471530 @default.
- W2956718877 cites W2119839985 @default.
- W2956718877 cites W2144623333 @default.
- W2956718877 cites W2156665896 @default.
- W2956718877 cites W2156836859 @default.
- W2956718877 cites W2300805880 @default.
- W2956718877 cites W2511683089 @default.
- W2956718877 cites W2560370080 @default.
- W2956718877 cites W2734622828 @default.
- W2956718877 cites W2774931013 @default.
- W2956718877 cites W2783204403 @default.
- W2956718877 cites W2784184607 @default.
- W2956718877 cites W2796072231 @default.
- W2956718877 cites W2884415573 @default.
- W2956718877 cites W2888188061 @default.
- W2956718877 cites W2897625161 @default.
- W2956718877 cites W2915806950 @default.
- W2956718877 cites W2922403949 @default.
- W2956718877 doi "https://doi.org/10.1016/j.enconman.2019.06.083" @default.
- W2956718877 hasPublicationYear "2019" @default.
- W2956718877 type Work @default.
- W2956718877 sameAs 2956718877 @default.
- W2956718877 citedByCount "47" @default.
- W2956718877 countsByYear W29567188772020 @default.
- W2956718877 countsByYear W29567188772021 @default.
- W2956718877 countsByYear W29567188772022 @default.
- W2956718877 countsByYear W29567188772023 @default.
- W2956718877 crossrefType "journal-article" @default.
- W2956718877 hasAuthorship W2956718877A5021355100 @default.
- W2956718877 hasAuthorship W2956718877A5032198757 @default.
- W2956718877 hasAuthorship W2956718877A5065414881 @default.
- W2956718877 hasAuthorship W2956718877A5084808312 @default.
- W2956718877 hasAuthorship W2956718877A5089748140 @default.
- W2956718877 hasConcept C103402496 @default.
- W2956718877 hasConcept C119599485 @default.
- W2956718877 hasConcept C119857082 @default.
- W2956718877 hasConcept C121332964 @default.
- W2956718877 hasConcept C122282355 @default.
- W2956718877 hasConcept C124101348 @default.
- W2956718877 hasConcept C127413603 @default.
- W2956718877 hasConcept C153083717 @default.
- W2956718877 hasConcept C153294291 @default.
- W2956718877 hasConcept C154945302 @default.
- W2956718877 hasConcept C161067210 @default.
- W2956718877 hasConcept C163716315 @default.
- W2956718877 hasConcept C205649164 @default.
- W2956718877 hasConcept C41008148 @default.
- W2956718877 hasConcept C49937458 @default.
- W2956718877 hasConcept C50644808 @default.
- W2956718877 hasConcept C61326573 @default.
- W2956718877 hasConcept C62520636 @default.
- W2956718877 hasConcept C78600449 @default.
- W2956718877 hasConcept C81692654 @default.
- W2956718877 hasConceptScore W2956718877C103402496 @default.
- W2956718877 hasConceptScore W2956718877C119599485 @default.
- W2956718877 hasConceptScore W2956718877C119857082 @default.
- W2956718877 hasConceptScore W2956718877C121332964 @default.
- W2956718877 hasConceptScore W2956718877C122282355 @default.
- W2956718877 hasConceptScore W2956718877C124101348 @default.
- W2956718877 hasConceptScore W2956718877C127413603 @default.
- W2956718877 hasConceptScore W2956718877C153083717 @default.
- W2956718877 hasConceptScore W2956718877C153294291 @default.
- W2956718877 hasConceptScore W2956718877C154945302 @default.
- W2956718877 hasConceptScore W2956718877C161067210 @default.
- W2956718877 hasConceptScore W2956718877C163716315 @default.
- W2956718877 hasConceptScore W2956718877C205649164 @default.
- W2956718877 hasConceptScore W2956718877C41008148 @default.
- W2956718877 hasConceptScore W2956718877C49937458 @default.
- W2956718877 hasConceptScore W2956718877C50644808 @default.
- W2956718877 hasConceptScore W2956718877C61326573 @default.
- W2956718877 hasConceptScore W2956718877C62520636 @default.
- W2956718877 hasConceptScore W2956718877C78600449 @default.
- W2956718877 hasConceptScore W2956718877C81692654 @default.
- W2956718877 hasFunder F4320321001 @default.
- W2956718877 hasFunder F4320335787 @default.
- W2956718877 hasLocation W29567188771 @default.
- W2956718877 hasOpenAccess W2956718877 @default.
- W2956718877 hasPrimaryLocation W29567188771 @default.
- W2956718877 hasRelatedWork W2053962683 @default.
- W2956718877 hasRelatedWork W2088093866 @default.
- W2956718877 hasRelatedWork W2560760166 @default.
- W2956718877 hasRelatedWork W2770483512 @default.
- W2956718877 hasRelatedWork W2888718979 @default.
- W2956718877 hasRelatedWork W3045581733 @default.
- W2956718877 hasRelatedWork W3183880820 @default.