Matches in SemOpenAlex for { <https://semopenalex.org/work/W2956755231> ?p ?o ?g. }
- W2956755231 endingPage "2243" @default.
- W2956755231 startingPage "2232" @default.
- W2956755231 abstract "ConspectusBecause of its natural abundance, hierarchical fibrous structure, mechanical flexibility, potential for chemical modification, biocompatibility, renewability, and abundance, cellulose is one of the most promising green materials for a bio-based future and sustainable economy. Cellulose derived from wood or bacteria has dominated the industrial cellulose market and has been developed to produce a number of advanced materials for applications in energy storage, environmental, and biotechnology areas. However, Cladophora cellulose (CC) extracted from green algae has unprecedented advantages over those celluloses because of its high crystallinity (>95%), low moisture adsorption capacity, excellent solution processability, high porosity in the mesoporous range, and associated high specific surface area. The unique physical and chemical properties of CC can add new features to and enhance the performance of nanocellulose-based materials, and these attributes have attracted a great deal of research interest over the past decade.This Account summarizes our recent research on the preparation, characterization, functionalization, and versatile applications of CC. Our aim is to provide a comprehensive overview of the uniqueness of CC with respect to material structure, properties, and emerging applications. We discuss the potential of CC in energy storage, environmental science, and life science, with emphasis on applications in which its properties are superior to those of other nanocellulose forms. Specifically, we discuss the production of the first-ever paper battery based on CC. This battery has initiated a rising interest in the development of sustainable paper-based energy storage devices, where cellulose is used as a combined building block and binder for paper electrodes of various types in combination with carbon, conducting polymers, and other electroactive materials. High-active-mass and high-mass-loading paper electrodes can be made in which the CC acts as a high-surface-area and porous substrate while a thin layer of electroactive material is coated on individual nanofibrils. We have shown that CC membranes can be used directly as battery separators because of their low moisture content, high mesoporosity, high thermal stability, and good electrolyte wettability. The safety, stability, and capacity of lithium-ion batteries can be enhanced simply by using CC-based separators. Moreover, the high chemical modifiability and adjustable porosity of dried CC papers allow them to be used as advanced membranes for environmental science (water and air purification, pollutant adsorption) and life science (virus isolation, protein recovery, hemodialysis, DNA extraction, bioactive substrates). Finally, we outline some concluding perspectives on the challenges and future directions of CC research with the aim to open up yet unexplored fields of use for this interesting material." @default.
- W2956755231 created "2019-07-23" @default.
- W2956755231 creator A5015628505 @default.
- W2956755231 creator A5035823261 @default.
- W2956755231 creator A5037359873 @default.
- W2956755231 creator A5043471925 @default.
- W2956755231 date "2019-07-10" @default.
- W2956755231 modified "2023-10-18" @default.
- W2956755231 title "<i>Cladophora</i> Cellulose: Unique Biopolymer Nanofibrils for Emerging Energy, Environmental, and Life Science Applications" @default.
- W2956755231 cites W1786317728 @default.
- W2956755231 cites W1944374742 @default.
- W2956755231 cites W1966962627 @default.
- W2956755231 cites W1979431708 @default.
- W2956755231 cites W1985017852 @default.
- W2956755231 cites W1986603784 @default.
- W2956755231 cites W2003173650 @default.
- W2956755231 cites W2009250708 @default.
- W2956755231 cites W2017753963 @default.
- W2956755231 cites W2019586432 @default.
- W2956755231 cites W2035341916 @default.
- W2956755231 cites W2035751264 @default.
- W2956755231 cites W2049094457 @default.
- W2956755231 cites W2058865403 @default.
- W2956755231 cites W2064886658 @default.
- W2956755231 cites W2066443356 @default.
- W2956755231 cites W2072609027 @default.
- W2956755231 cites W2080729413 @default.
- W2956755231 cites W2087391457 @default.
- W2956755231 cites W2091218781 @default.
- W2956755231 cites W2092102254 @default.
- W2956755231 cites W2096677553 @default.
- W2956755231 cites W2109520483 @default.
- W2956755231 cites W2114012549 @default.
- W2956755231 cites W2137049079 @default.
- W2956755231 cites W2156838050 @default.
- W2956755231 cites W2169505936 @default.
- W2956755231 cites W2182688971 @default.
- W2956755231 cites W2205940839 @default.
- W2956755231 cites W2217317199 @default.
- W2956755231 cites W2249046658 @default.
- W2956755231 cites W2345874050 @default.
- W2956755231 cites W2406310241 @default.
- W2956755231 cites W2471069962 @default.
- W2956755231 cites W2500632459 @default.
- W2956755231 cites W2502222927 @default.
- W2956755231 cites W2571309095 @default.
- W2956755231 cites W2608000227 @default.
- W2956755231 cites W2612156871 @default.
- W2956755231 cites W2612728751 @default.
- W2956755231 cites W2775839930 @default.
- W2956755231 cites W2777165353 @default.
- W2956755231 cites W2782777420 @default.
- W2956755231 cites W2791469516 @default.
- W2956755231 cites W2794324804 @default.
- W2956755231 cites W2800690740 @default.
- W2956755231 cites W2881171048 @default.
- W2956755231 cites W2886646723 @default.
- W2956755231 cites W2895857565 @default.
- W2956755231 cites W2896913307 @default.
- W2956755231 cites W2899829747 @default.
- W2956755231 cites W2904125785 @default.
- W2956755231 cites W2905377933 @default.
- W2956755231 cites W2907192835 @default.
- W2956755231 cites W2912309937 @default.
- W2956755231 cites W72627025 @default.
- W2956755231 doi "https://doi.org/10.1021/acs.accounts.9b00215" @default.
- W2956755231 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31290643" @default.
- W2956755231 hasPublicationYear "2019" @default.
- W2956755231 type Work @default.
- W2956755231 sameAs 2956755231 @default.
- W2956755231 citedByCount "65" @default.
- W2956755231 countsByYear W29567552312019 @default.
- W2956755231 countsByYear W29567552312020 @default.
- W2956755231 countsByYear W29567552312021 @default.
- W2956755231 countsByYear W29567552312022 @default.
- W2956755231 countsByYear W29567552312023 @default.
- W2956755231 crossrefType "journal-article" @default.
- W2956755231 hasAuthorship W2956755231A5015628505 @default.
- W2956755231 hasAuthorship W2956755231A5035823261 @default.
- W2956755231 hasAuthorship W2956755231A5037359873 @default.
- W2956755231 hasAuthorship W2956755231A5043471925 @default.
- W2956755231 hasConcept C115537861 @default.
- W2956755231 hasConcept C127413603 @default.
- W2956755231 hasConcept C159985019 @default.
- W2956755231 hasConcept C163283067 @default.
- W2956755231 hasConcept C171250308 @default.
- W2956755231 hasConcept C18903297 @default.
- W2956755231 hasConcept C192562407 @default.
- W2956755231 hasConcept C2777968448 @default.
- W2956755231 hasConcept C2778636629 @default.
- W2956755231 hasConcept C2779251873 @default.
- W2956755231 hasConcept C2779477270 @default.
- W2956755231 hasConcept C2780539527 @default.
- W2956755231 hasConcept C39432304 @default.
- W2956755231 hasConcept C42360764 @default.
- W2956755231 hasConcept C521977710 @default.
- W2956755231 hasConcept C559758991 @default.
- W2956755231 hasConcept C86803240 @default.