Matches in SemOpenAlex for { <https://semopenalex.org/work/W2956917852> ?p ?o ?g. }
- W2956917852 endingPage "4042" @default.
- W2956917852 startingPage "4031" @default.
- W2956917852 abstract "The concept of dependency in a neighborhood rough set model is an important evaluation function for the feature selection. This function considers only the classification information contained in the lower approximation of the decision while ignoring the upper approximation. In this paper, we construct a class of uncertainty measures: decision self-information for the feature selection. These measures take into account the uncertainty information in the lower and the upper approximations. The relationships between these measures and their properties are discussed in detail. It is proven that the fourth measure, called relative neighborhood self-information, is better for feature selection than the other measures, because not only does it consider both the lower and the upper approximations but also the change of its magnitude is largest with the variation of feature subsets. This helps to facilitate the selection of optimal feature subsets. Finally, a greedy algorithm for feature selection has been designed and a series of numerical experiments was carried out to verify the effectiveness of the proposed algorithm. The experimental results show that the proposed algorithm often chooses fewer features and improves the classification accuracy in most cases." @default.
- W2956917852 created "2019-07-23" @default.
- W2956917852 creator A5039357045 @default.
- W2956917852 creator A5046311971 @default.
- W2956917852 creator A5056686459 @default.
- W2956917852 creator A5069347046 @default.
- W2956917852 creator A5072912487 @default.
- W2956917852 date "2020-09-01" @default.
- W2956917852 modified "2023-10-14" @default.
- W2956917852 title "Feature Selection Based on Neighborhood Self-Information" @default.
- W2956917852 cites W1240530754 @default.
- W2956917852 cites W1500895378 @default.
- W2956917852 cites W1983105620 @default.
- W2956917852 cites W1983426508 @default.
- W2956917852 cites W1995875735 @default.
- W2956917852 cites W2013378801 @default.
- W2956917852 cites W2016944307 @default.
- W2956917852 cites W2017337590 @default.
- W2956917852 cites W2023441160 @default.
- W2956917852 cites W2025172647 @default.
- W2956917852 cites W2027654459 @default.
- W2956917852 cites W2027810825 @default.
- W2956917852 cites W2036125981 @default.
- W2956917852 cites W2051526375 @default.
- W2956917852 cites W2051958371 @default.
- W2956917852 cites W2092845575 @default.
- W2956917852 cites W2101924850 @default.
- W2956917852 cites W2102831150 @default.
- W2956917852 cites W2113890143 @default.
- W2956917852 cites W2115061082 @default.
- W2956917852 cites W2145391482 @default.
- W2956917852 cites W2153098502 @default.
- W2956917852 cites W2154053567 @default.
- W2956917852 cites W2158633287 @default.
- W2956917852 cites W2162845119 @default.
- W2956917852 cites W2165267798 @default.
- W2956917852 cites W2169038408 @default.
- W2956917852 cites W2318901577 @default.
- W2956917852 cites W2342915065 @default.
- W2956917852 cites W2395763878 @default.
- W2956917852 cites W2432138738 @default.
- W2956917852 cites W2469313201 @default.
- W2956917852 cites W2521981120 @default.
- W2956917852 cites W2561208659 @default.
- W2956917852 cites W2586356223 @default.
- W2956917852 cites W2588460665 @default.
- W2956917852 cites W2620020068 @default.
- W2956917852 cites W2734749984 @default.
- W2956917852 cites W2745346289 @default.
- W2956917852 cites W2762194741 @default.
- W2956917852 cites W2766239046 @default.
- W2956917852 cites W2771788932 @default.
- W2956917852 cites W2772794611 @default.
- W2956917852 cites W2786298323 @default.
- W2956917852 cites W2796330245 @default.
- W2956917852 cites W2799371241 @default.
- W2956917852 cites W2883355296 @default.
- W2956917852 cites W2887694635 @default.
- W2956917852 cites W2899142335 @default.
- W2956917852 cites W2899356345 @default.
- W2956917852 cites W2908473781 @default.
- W2956917852 cites W2912707296 @default.
- W2956917852 cites W2952429360 @default.
- W2956917852 cites W4242193563 @default.
- W2956917852 cites W4255833381 @default.
- W2956917852 doi "https://doi.org/10.1109/tcyb.2019.2923430" @default.
- W2956917852 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31295137" @default.
- W2956917852 hasPublicationYear "2020" @default.
- W2956917852 type Work @default.
- W2956917852 sameAs 2956917852 @default.
- W2956917852 citedByCount "129" @default.
- W2956917852 countsByYear W29569178522020 @default.
- W2956917852 countsByYear W29569178522021 @default.
- W2956917852 countsByYear W29569178522022 @default.
- W2956917852 countsByYear W29569178522023 @default.
- W2956917852 crossrefType "journal-article" @default.
- W2956917852 hasAuthorship W2956917852A5039357045 @default.
- W2956917852 hasAuthorship W2956917852A5046311971 @default.
- W2956917852 hasAuthorship W2956917852A5056686459 @default.
- W2956917852 hasAuthorship W2956917852A5069347046 @default.
- W2956917852 hasAuthorship W2956917852A5072912487 @default.
- W2956917852 hasConcept C111012933 @default.
- W2956917852 hasConcept C11413529 @default.
- W2956917852 hasConcept C124101348 @default.
- W2956917852 hasConcept C126255220 @default.
- W2956917852 hasConcept C138885662 @default.
- W2956917852 hasConcept C14036430 @default.
- W2956917852 hasConcept C148483581 @default.
- W2956917852 hasConcept C152139883 @default.
- W2956917852 hasConcept C153180895 @default.
- W2956917852 hasConcept C154945302 @default.
- W2956917852 hasConcept C177264268 @default.
- W2956917852 hasConcept C19768560 @default.
- W2956917852 hasConcept C199360897 @default.
- W2956917852 hasConcept C2776401178 @default.
- W2956917852 hasConcept C2777212361 @default.
- W2956917852 hasConcept C2780009758 @default.
- W2956917852 hasConcept C2780801425 @default.