Matches in SemOpenAlex for { <https://semopenalex.org/work/W2956993163> ?p ?o ?g. }
- W2956993163 abstract "Deep neural networks have led to state-of-the-art results in many medical imaging tasks including Alzheimer's disease (AD) detection based on structural magnetic resonance imaging (MRI) data. However, the network decisions are often perceived as being highly non-transparent, making it difficult to apply these algorithms in clinical routine. In this study, we propose using layer-wise relevance propagation (LRP) to visualize convolutional neural network decisions for AD based on MRI data. Similarly to other visualization methods, LRP produces a heatmap in the input space indicating the importance/relevance of each voxel contributing to the final classification outcome. In contrast to susceptibility maps produced by guided backpropagation (Which change in voxels would change the outcome most?), the LRP method is able to directly highlight positive contributions to the network classification in the input space. In particular, we show that (1) the LRP method is very specific for individuals (Why does this person have AD?) with high inter-patient variability, (2) there is very little relevance for AD in healthy controls and (3) areas that exhibit a lot of relevance correlate well with what is known from literature. To quantify the latter, we compute size-corrected metrics of the summed relevance per brain area, e.g., relevance density or relevance gain. Although these metrics produce very individual fingerprints of relevance patterns for AD patients, a lot of importance is put on areas in the temporal lobe including the hippocampus. After discussing several limitations such as sensitivity toward the underlying model and computation parameters, we conclude that LRP might have a high potential to assist clinicians in explaining neural network decisions for diagnosing AD (and potentially other diseases) based on structural MRI data." @default.
- W2956993163 created "2019-07-23" @default.
- W2956993163 creator A5024698827 @default.
- W2956993163 creator A5040460070 @default.
- W2956993163 creator A5059074320 @default.
- W2956993163 creator A5066884630 @default.
- W2956993163 date "2019-07-31" @default.
- W2956993163 modified "2023-10-14" @default.
- W2956993163 title "Layer-Wise Relevance Propagation for Explaining Deep Neural Network Decisions in MRI-Based Alzheimer's Disease Classification" @default.
- W2956993163 cites W1588839144 @default.
- W2956993163 cites W1619016366 @default.
- W2956993163 cites W1787224781 @default.
- W2956993163 cites W1858367097 @default.
- W2956993163 cites W1969959732 @default.
- W2956993163 cites W1991952617 @default.
- W2956993163 cites W1995562189 @default.
- W2956993163 cites W2007044705 @default.
- W2956993163 cites W2027675577 @default.
- W2956993163 cites W2038003677 @default.
- W2956993163 cites W2052742260 @default.
- W2956993163 cites W2075444764 @default.
- W2956993163 cites W2107564884 @default.
- W2956993163 cites W2112398095 @default.
- W2956993163 cites W2121584008 @default.
- W2956993163 cites W2126598020 @default.
- W2956993163 cites W2143731392 @default.
- W2956993163 cites W2155232776 @default.
- W2956993163 cites W2158063156 @default.
- W2956993163 cites W2170223000 @default.
- W2956993163 cites W2171831801 @default.
- W2956993163 cites W2240067561 @default.
- W2956993163 cites W2339432679 @default.
- W2956993163 cites W2395611524 @default.
- W2956993163 cites W2512799703 @default.
- W2956993163 cites W2528250414 @default.
- W2956993163 cites W2528491735 @default.
- W2956993163 cites W2569531558 @default.
- W2956993163 cites W2580596898 @default.
- W2956993163 cites W2592343442 @default.
- W2956993163 cites W2592929672 @default.
- W2956993163 cites W2594630594 @default.
- W2956993163 cites W2606278400 @default.
- W2956993163 cites W2606546398 @default.
- W2956993163 cites W2657631929 @default.
- W2956993163 cites W2762081760 @default.
- W2956993163 cites W2775724624 @default.
- W2956993163 cites W2791164041 @default.
- W2956993163 cites W2791282053 @default.
- W2956993163 cites W2884156795 @default.
- W2956993163 cites W2885850791 @default.
- W2956993163 cites W2899635607 @default.
- W2956993163 cites W2919115771 @default.
- W2956993163 cites W2963287333 @default.
- W2956993163 cites W3100125480 @default.
- W2956993163 doi "https://doi.org/10.3389/fnagi.2019.00194" @default.
- W2956993163 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6685087" @default.
- W2956993163 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31417397" @default.
- W2956993163 hasPublicationYear "2019" @default.
- W2956993163 type Work @default.
- W2956993163 sameAs 2956993163 @default.
- W2956993163 citedByCount "136" @default.
- W2956993163 countsByYear W29569931632012 @default.
- W2956993163 countsByYear W29569931632019 @default.
- W2956993163 countsByYear W29569931632020 @default.
- W2956993163 countsByYear W29569931632021 @default.
- W2956993163 countsByYear W29569931632022 @default.
- W2956993163 countsByYear W29569931632023 @default.
- W2956993163 crossrefType "journal-article" @default.
- W2956993163 hasAuthorship W2956993163A5024698827 @default.
- W2956993163 hasAuthorship W2956993163A5040460070 @default.
- W2956993163 hasAuthorship W2956993163A5059074320 @default.
- W2956993163 hasAuthorship W2956993163A5066884630 @default.
- W2956993163 hasBestOaLocation W29569931631 @default.
- W2956993163 hasConcept C119857082 @default.
- W2956993163 hasConcept C142724271 @default.
- W2956993163 hasConcept C153180895 @default.
- W2956993163 hasConcept C154945302 @default.
- W2956993163 hasConcept C155032097 @default.
- W2956993163 hasConcept C15744967 @default.
- W2956993163 hasConcept C158154518 @default.
- W2956993163 hasConcept C169760540 @default.
- W2956993163 hasConcept C17744445 @default.
- W2956993163 hasConcept C199539241 @default.
- W2956993163 hasConcept C2778186239 @default.
- W2956993163 hasConcept C2779226451 @default.
- W2956993163 hasConcept C2781099131 @default.
- W2956993163 hasConcept C41008148 @default.
- W2956993163 hasConcept C50644808 @default.
- W2956993163 hasConcept C54170458 @default.
- W2956993163 hasConcept C63363279 @default.
- W2956993163 hasConcept C71924100 @default.
- W2956993163 hasConcept C81363708 @default.
- W2956993163 hasConceptScore W2956993163C119857082 @default.
- W2956993163 hasConceptScore W2956993163C142724271 @default.
- W2956993163 hasConceptScore W2956993163C153180895 @default.
- W2956993163 hasConceptScore W2956993163C154945302 @default.
- W2956993163 hasConceptScore W2956993163C155032097 @default.
- W2956993163 hasConceptScore W2956993163C15744967 @default.
- W2956993163 hasConceptScore W2956993163C158154518 @default.
- W2956993163 hasConceptScore W2956993163C169760540 @default.