Matches in SemOpenAlex for { <https://semopenalex.org/work/W2957036239> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2957036239 endingPage "57" @default.
- W2957036239 startingPage "42" @default.
- W2957036239 abstract "Convolutional neural network (CNN) has become the architecture of choice for visual recognition tasks. However, these models are perceived as black boxes since there is a lack of understanding of their learned behavior from the underlying task of interest. This lack of transparency is a drawback since poorly understood model behavior could adversely impact subsequent decision-making. Researchers use novel machine learning (ML) tools to classify the medical imaging modalities. However, it is poorly understood how these algorithms discriminate the modalities and if there are implicit opportunities for improving visual information access applications in computational biomedicine. In this study, we visualize the learned weights and salient network activations in a CNN based Deep Learning (DL) model to determine the image characteristics that lend themselves for improved classification with a goal of developing informed clinical question-answering systems. To support our analysis we cross-validate model performance to reduce bias and generalization errors and perform statistical analyses to assess performance differences." @default.
- W2957036239 created "2019-07-23" @default.
- W2957036239 creator A5017208524 @default.
- W2957036239 creator A5073995883 @default.
- W2957036239 date "2019-01-01" @default.
- W2957036239 modified "2023-09-23" @default.
- W2957036239 title "Visualizing Salient Network Activations in Convolutional Neural Networks for Medical Image Modality Classification" @default.
- W2957036239 cites W1849277567 @default.
- W2957036239 cites W1963595563 @default.
- W2957036239 cites W1969496006 @default.
- W2957036239 cites W2052561043 @default.
- W2957036239 cites W2062118960 @default.
- W2957036239 cites W2071981157 @default.
- W2957036239 cites W2073982987 @default.
- W2957036239 cites W2083927153 @default.
- W2957036239 cites W2099698084 @default.
- W2957036239 cites W2108598243 @default.
- W2957036239 cites W2109553965 @default.
- W2957036239 cites W2123920375 @default.
- W2957036239 cites W2145339207 @default.
- W2957036239 cites W2145764948 @default.
- W2957036239 cites W2166401924 @default.
- W2957036239 cites W2168745915 @default.
- W2957036239 cites W2181279160 @default.
- W2957036239 cites W2183341477 @default.
- W2957036239 cites W2194775991 @default.
- W2957036239 cites W2219260526 @default.
- W2957036239 cites W2238329194 @default.
- W2957036239 cites W2531409750 @default.
- W2957036239 cites W2557991916 @default.
- W2957036239 cites W2559785631 @default.
- W2957036239 cites W2564516662 @default.
- W2957036239 cites W2600642189 @default.
- W2957036239 cites W2799742832 @default.
- W2957036239 cites W2810108253 @default.
- W2957036239 cites W2884203183 @default.
- W2957036239 cites W2884830895 @default.
- W2957036239 cites W2891756914 @default.
- W2957036239 cites W2898891934 @default.
- W2957036239 cites W2919115771 @default.
- W2957036239 cites W2963446712 @default.
- W2957036239 cites W3101156210 @default.
- W2957036239 cites W4206926752 @default.
- W2957036239 cites W67460294 @default.
- W2957036239 doi "https://doi.org/10.1007/978-981-13-9184-2_4" @default.
- W2957036239 hasPublicationYear "2019" @default.
- W2957036239 type Work @default.
- W2957036239 sameAs 2957036239 @default.
- W2957036239 citedByCount "3" @default.
- W2957036239 countsByYear W29570362392022 @default.
- W2957036239 crossrefType "book-chapter" @default.
- W2957036239 hasAuthorship W2957036239A5017208524 @default.
- W2957036239 hasAuthorship W2957036239A5073995883 @default.
- W2957036239 hasConcept C153180895 @default.
- W2957036239 hasConcept C154945302 @default.
- W2957036239 hasConcept C204321447 @default.
- W2957036239 hasConcept C2780226545 @default.
- W2957036239 hasConcept C2780719617 @default.
- W2957036239 hasConcept C41008148 @default.
- W2957036239 hasConcept C81363708 @default.
- W2957036239 hasConceptScore W2957036239C153180895 @default.
- W2957036239 hasConceptScore W2957036239C154945302 @default.
- W2957036239 hasConceptScore W2957036239C204321447 @default.
- W2957036239 hasConceptScore W2957036239C2780226545 @default.
- W2957036239 hasConceptScore W2957036239C2780719617 @default.
- W2957036239 hasConceptScore W2957036239C41008148 @default.
- W2957036239 hasConceptScore W2957036239C81363708 @default.
- W2957036239 hasLocation W29570362391 @default.
- W2957036239 hasOpenAccess W2957036239 @default.
- W2957036239 hasPrimaryLocation W29570362391 @default.
- W2957036239 hasRelatedWork W2040619671 @default.
- W2957036239 hasRelatedWork W2175746458 @default.
- W2957036239 hasRelatedWork W2732542196 @default.
- W2957036239 hasRelatedWork W2738221750 @default.
- W2957036239 hasRelatedWork W2760085659 @default.
- W2957036239 hasRelatedWork W2912288872 @default.
- W2957036239 hasRelatedWork W3012978760 @default.
- W2957036239 hasRelatedWork W3081496756 @default.
- W2957036239 hasRelatedWork W3093612317 @default.
- W2957036239 hasRelatedWork W4304820710 @default.
- W2957036239 isParatext "false" @default.
- W2957036239 isRetracted "false" @default.
- W2957036239 magId "2957036239" @default.
- W2957036239 workType "book-chapter" @default.