Matches in SemOpenAlex for { <https://semopenalex.org/work/W2957100315> ?p ?o ?g. }
- W2957100315 endingPage "7916" @default.
- W2957100315 startingPage "7904" @default.
- W2957100315 abstract "The inclusion of feed intake and efficiency traits in dairy cow breeding goals can lead to increased risk of metabolic stress. An easy and inexpensive way to monitor postpartum energy status (ES) of cows is therefore needed. Cows' ES can be estimated by calculating the energy balance from energy intake and output and predicted by indicator traits such as change in body weight (ΔBW), change in body condition score (ΔBCS), milk fat:protein ratio (FPR), or milk fatty acid (FA) composition. In this study, we used blood plasma nonesterified fatty acids (NEFA) concentration as a biomarker for ES. We determined associations between NEFA concentration and ES indicators and evaluated the usefulness of body and milk traits alone, or together, in predicting ES of the cow. Data were collected from 2 research herds during 2013 to 2016 and included 137 Nordic Red dairy cows, all of which had a first lactation and 59 of which also had a second lactation. The data included daily body weight, milk yield, and feed intake and monthly BCS. Plasma samples for NEFA were collected twice in lactation wk 2 and 3 and once in wk 20. Milk samples for analysis of fat, protein, lactose, and FA concentrations were taken on the blood sampling days. Plasma NEFA concentration was higher in lactation wk 2 and 3 than in wk 20 (0.56 ± 0.30, 0.43 ± 0.22, and 0.13 ± 0.06 mmol/L, respectively; all means ± standard deviation). Among individual indicators, C18:1 cis-9 and the sum of C18:1 in milk had the highest correlations (r = 0.73) with NEFA. Seven multiple linear regression models for NEFA prediction were developed using stepwise selection. Of the models that included milk traits (other than milk FA) as well as body traits, the best fit was achieved by a model with milk yield, FPR, ΔBW, ΔBCS, FPR × ΔBW, and days in milk. The model resulted in a cross-validation coefficient of determination (R2cv) of 0.51 and a root mean squared error (RMSE) of 0.196 mmol/L. When only milk FA concentrations were considered in the model, NEFA prediction was more accurate using measurements from evening milk than from morning milk (R2cv = 0.61 vs. 0.53). The best model with milk traits contained FPR, C10:0, C14:0, C18:1 cis-9, C18:1 cis-9 × C14:0, and days in milk (R2cv = 0.62; RMSE = 0.177 mmol/L). The most advanced model using both milk and body traits gave a slightly better fit than the model with only milk traits (R2cv = 0.63; RMSE = 0.176 mmol/L). Our findings indicate that ES of cows in early lactation can be monitored with moderately high accuracy by routine milk measurements." @default.
- W2957100315 created "2019-07-23" @default.
- W2957100315 creator A5007261785 @default.
- W2957100315 creator A5019527464 @default.
- W2957100315 creator A5020625264 @default.
- W2957100315 creator A5028760012 @default.
- W2957100315 creator A5060682688 @default.
- W2957100315 creator A5084328730 @default.
- W2957100315 creator A5086902185 @default.
- W2957100315 creator A5089877006 @default.
- W2957100315 date "2019-09-01" @default.
- W2957100315 modified "2023-10-12" @default.
- W2957100315 title "Body and milk traits as indicators of dairy cow energy status in early lactation" @default.
- W2957100315 cites W1860941285 @default.
- W2957100315 cites W1967791032 @default.
- W2957100315 cites W1968420488 @default.
- W2957100315 cites W1977404830 @default.
- W2957100315 cites W1989312291 @default.
- W2957100315 cites W1993602492 @default.
- W2957100315 cites W1997196465 @default.
- W2957100315 cites W2001936988 @default.
- W2957100315 cites W2008419698 @default.
- W2957100315 cites W2010894032 @default.
- W2957100315 cites W2014590283 @default.
- W2957100315 cites W2026344489 @default.
- W2957100315 cites W2028053975 @default.
- W2957100315 cites W2049628589 @default.
- W2957100315 cites W2050875594 @default.
- W2957100315 cites W2059150824 @default.
- W2957100315 cites W2092322883 @default.
- W2957100315 cites W2095699509 @default.
- W2957100315 cites W2100430892 @default.
- W2957100315 cites W2103637886 @default.
- W2957100315 cites W2108439743 @default.
- W2957100315 cites W2108630010 @default.
- W2957100315 cites W2108958974 @default.
- W2957100315 cites W2109973674 @default.
- W2957100315 cites W2117758843 @default.
- W2957100315 cites W2125622114 @default.
- W2957100315 cites W2134606727 @default.
- W2957100315 cites W2148370581 @default.
- W2957100315 cites W2154083690 @default.
- W2957100315 cites W2168814779 @default.
- W2957100315 cites W2618348280 @default.
- W2957100315 cites W2787987907 @default.
- W2957100315 cites W3201773056 @default.
- W2957100315 doi "https://doi.org/10.3168/jds.2018-15792" @default.
- W2957100315 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31301831" @default.
- W2957100315 hasPublicationYear "2019" @default.
- W2957100315 type Work @default.
- W2957100315 sameAs 2957100315 @default.
- W2957100315 citedByCount "32" @default.
- W2957100315 countsByYear W29571003152019 @default.
- W2957100315 countsByYear W29571003152020 @default.
- W2957100315 countsByYear W29571003152021 @default.
- W2957100315 countsByYear W29571003152022 @default.
- W2957100315 countsByYear W29571003152023 @default.
- W2957100315 crossrefType "journal-article" @default.
- W2957100315 hasAuthorship W2957100315A5007261785 @default.
- W2957100315 hasAuthorship W2957100315A5019527464 @default.
- W2957100315 hasAuthorship W2957100315A5020625264 @default.
- W2957100315 hasAuthorship W2957100315A5028760012 @default.
- W2957100315 hasAuthorship W2957100315A5060682688 @default.
- W2957100315 hasAuthorship W2957100315A5084328730 @default.
- W2957100315 hasAuthorship W2957100315A5086902185 @default.
- W2957100315 hasAuthorship W2957100315A5089877006 @default.
- W2957100315 hasBestOaLocation W29571003151 @default.
- W2957100315 hasConcept C126322002 @default.
- W2957100315 hasConcept C134018914 @default.
- W2957100315 hasConcept C140793950 @default.
- W2957100315 hasConcept C185592680 @default.
- W2957100315 hasConcept C18903297 @default.
- W2957100315 hasConcept C194775826 @default.
- W2957100315 hasConcept C2776659692 @default.
- W2957100315 hasConcept C2776977481 @default.
- W2957100315 hasConcept C2777423268 @default.
- W2957100315 hasConcept C2778724459 @default.
- W2957100315 hasConcept C2779234561 @default.
- W2957100315 hasConcept C2779306644 @default.
- W2957100315 hasConcept C2779772378 @default.
- W2957100315 hasConcept C31903555 @default.
- W2957100315 hasConcept C543025807 @default.
- W2957100315 hasConcept C54355233 @default.
- W2957100315 hasConcept C55493867 @default.
- W2957100315 hasConcept C71924100 @default.
- W2957100315 hasConcept C86803240 @default.
- W2957100315 hasConceptScore W2957100315C126322002 @default.
- W2957100315 hasConceptScore W2957100315C134018914 @default.
- W2957100315 hasConceptScore W2957100315C140793950 @default.
- W2957100315 hasConceptScore W2957100315C185592680 @default.
- W2957100315 hasConceptScore W2957100315C18903297 @default.
- W2957100315 hasConceptScore W2957100315C194775826 @default.
- W2957100315 hasConceptScore W2957100315C2776659692 @default.
- W2957100315 hasConceptScore W2957100315C2776977481 @default.
- W2957100315 hasConceptScore W2957100315C2777423268 @default.
- W2957100315 hasConceptScore W2957100315C2778724459 @default.
- W2957100315 hasConceptScore W2957100315C2779234561 @default.
- W2957100315 hasConceptScore W2957100315C2779306644 @default.