Matches in SemOpenAlex for { <https://semopenalex.org/work/W2957148625> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2957148625 endingPage "052007" @default.
- W2957148625 startingPage "052007" @default.
- W2957148625 abstract "Abstract In order to promote the accuracy of anomaly detection model under the condition of only a small number of labeled samples and large number of unlabeled samples, abnormal detection of One-class Support Vector Machine(SVM) based on ensemble cooperative Semi-supervised Learning is proposed. A kind of One-class SVM model which bring supervision with a small number of abnormal samples can classify samples with max interval. The semi-supervised learning methods easily suffer from the low accuracy because the mistake labeled sample are chosen as training sample set. Refer to the semi-supervision method of Tri-training, the K-Nearest Neighbour(KNN) and Naive Bayes classifier are used to uses to assist the One-class SVM based on ensemble cooperative Semi-supervised learning method which can classify the large number of unlabeled samples as accurate as possible. The weight is also given after ensemble cooperative Semi-supervised Learning. Then the proposed semi-supervised One-class SVM would be trained with the result and used to classify test samples. The experimental results on UCI dataset show that the proposed algorithm achieves higher classification accuracy with less labeled samples and it improves generalization performance and reduces the labelling cost." @default.
- W2957148625 created "2019-07-23" @default.
- W2957148625 creator A5002884286 @default.
- W2957148625 creator A5036775951 @default.
- W2957148625 creator A5051907368 @default.
- W2957148625 creator A5060212275 @default.
- W2957148625 date "2019-06-01" @default.
- W2957148625 modified "2023-09-23" @default.
- W2957148625 title "Research on abnormal detection of one-class support vector machine based on ensemble cooperative semi-supervised learning" @default.
- W2957148625 cites W2095345875 @default.
- W2957148625 cites W2100294832 @default.
- W2957148625 cites W2107157233 @default.
- W2957148625 cites W2119132975 @default.
- W2957148625 cites W2133556223 @default.
- W2957148625 doi "https://doi.org/10.1088/1742-6596/1237/5/052007" @default.
- W2957148625 hasPublicationYear "2019" @default.
- W2957148625 type Work @default.
- W2957148625 sameAs 2957148625 @default.
- W2957148625 citedByCount "2" @default.
- W2957148625 countsByYear W29571486252021 @default.
- W2957148625 countsByYear W29571486252022 @default.
- W2957148625 crossrefType "journal-article" @default.
- W2957148625 hasAuthorship W2957148625A5002884286 @default.
- W2957148625 hasAuthorship W2957148625A5036775951 @default.
- W2957148625 hasAuthorship W2957148625A5051907368 @default.
- W2957148625 hasAuthorship W2957148625A5060212275 @default.
- W2957148625 hasBestOaLocation W29571486251 @default.
- W2957148625 hasConcept C119857082 @default.
- W2957148625 hasConcept C12267149 @default.
- W2957148625 hasConcept C125168437 @default.
- W2957148625 hasConcept C136389625 @default.
- W2957148625 hasConcept C153180895 @default.
- W2957148625 hasConcept C154945302 @default.
- W2957148625 hasConcept C2777212361 @default.
- W2957148625 hasConcept C34872919 @default.
- W2957148625 hasConcept C41008148 @default.
- W2957148625 hasConcept C45942800 @default.
- W2957148625 hasConcept C50644808 @default.
- W2957148625 hasConcept C52001869 @default.
- W2957148625 hasConcept C58973888 @default.
- W2957148625 hasConcept C95623464 @default.
- W2957148625 hasConceptScore W2957148625C119857082 @default.
- W2957148625 hasConceptScore W2957148625C12267149 @default.
- W2957148625 hasConceptScore W2957148625C125168437 @default.
- W2957148625 hasConceptScore W2957148625C136389625 @default.
- W2957148625 hasConceptScore W2957148625C153180895 @default.
- W2957148625 hasConceptScore W2957148625C154945302 @default.
- W2957148625 hasConceptScore W2957148625C2777212361 @default.
- W2957148625 hasConceptScore W2957148625C34872919 @default.
- W2957148625 hasConceptScore W2957148625C41008148 @default.
- W2957148625 hasConceptScore W2957148625C45942800 @default.
- W2957148625 hasConceptScore W2957148625C50644808 @default.
- W2957148625 hasConceptScore W2957148625C52001869 @default.
- W2957148625 hasConceptScore W2957148625C58973888 @default.
- W2957148625 hasConceptScore W2957148625C95623464 @default.
- W2957148625 hasIssue "5" @default.
- W2957148625 hasLocation W29571486251 @default.
- W2957148625 hasOpenAccess W2957148625 @default.
- W2957148625 hasPrimaryLocation W29571486251 @default.
- W2957148625 hasRelatedWork W1162698213 @default.
- W2957148625 hasRelatedWork W1652652649 @default.
- W2957148625 hasRelatedWork W1986632995 @default.
- W2957148625 hasRelatedWork W2003853684 @default.
- W2957148625 hasRelatedWork W2025806549 @default.
- W2957148625 hasRelatedWork W2088091349 @default.
- W2957148625 hasRelatedWork W2117156317 @default.
- W2957148625 hasRelatedWork W2349843877 @default.
- W2957148625 hasRelatedWork W2359503510 @default.
- W2957148625 hasRelatedWork W2363367025 @default.
- W2957148625 hasRelatedWork W2364378155 @default.
- W2957148625 hasRelatedWork W2367656262 @default.
- W2957148625 hasRelatedWork W2370521549 @default.
- W2957148625 hasRelatedWork W2371429054 @default.
- W2957148625 hasRelatedWork W2374861174 @default.
- W2957148625 hasRelatedWork W2377260509 @default.
- W2957148625 hasRelatedWork W2383886116 @default.
- W2957148625 hasRelatedWork W2391158913 @default.
- W2957148625 hasRelatedWork W2999522033 @default.
- W2957148625 hasRelatedWork W2932615206 @default.
- W2957148625 hasVolume "1237" @default.
- W2957148625 isParatext "false" @default.
- W2957148625 isRetracted "false" @default.
- W2957148625 magId "2957148625" @default.
- W2957148625 workType "article" @default.