Matches in SemOpenAlex for { <https://semopenalex.org/work/W2957317778> ?p ?o ?g. }
- W2957317778 endingPage "828" @default.
- W2957317778 startingPage "819" @default.
- W2957317778 abstract "The energy consumption of an ammonia process plays an important role in the industrial energy consumption. For an ammonia synthesis process using pure oxygen gasification, the energy consumption of cryogenic air separation occupies a large proportion. The purity of the oxygen product from the air separation unit is mostly 99.6% in an ammonia process with pure oxygen gasification. The energy consumption of air separation will decrease significantly, if the purity of the oxygen product is reduced properly, which will lead to the decrease of the energy consumption of the total ammonia process, as the nitrogen element is needed for ammonia synthesis. However, the operating costs of the subsequent units will increase because of the increase of the syngas flow rate. So, there is an optimal oxygen purity that can minimize the energy consumption of the whole ammonia synthesis process. According to temperature, purification technology can be divided into cold and hot technologies. In this work, two different process models for ammonia production from coal with different purification technologies are developed to determine the process energy consumption with different inlet oxygen purity. In the process of ammonia production from coal with cold purification, the reduction of oxygen purity leads to the increase of energy consumption of oxygen compressor, methanol regeneration and refrigeration, and the decrease of nitrogen compressor power consumption. In the process with hot purification, the reduction of oxygen purity leads to the increase of energy consumption of oxygen compressor, preheating and MDEA regeneration, and the decrease of nitrogen compressor power consumption. The relationships between the eight kinds of energy consumption and oxygen purity are linear. Combined with the relationship between oxygen purity and the energy consumption of the air separation unit, the optimal oxygen purity which minimizes the process energy consumption is obtained. In the ammonia production process with cold purification, the optimal oxygen purity is 95%, which can save 10.3% of the energy consumption of the air separation compared with the current process using the 99.6% purity oxygen. While in the ammonia production process with hot purification, the optimal oxygen purity is 96%, which can save 8.4% of the energy consumption of the air separation." @default.
- W2957317778 created "2019-07-23" @default.
- W2957317778 creator A5042949953 @default.
- W2957317778 creator A5067377708 @default.
- W2957317778 date "2019-10-01" @default.
- W2957317778 modified "2023-09-23" @default.
- W2957317778 title "Energy optimization of ammonia synthesis processes based on oxygen purity under different purification technologies" @default.
- W2957317778 cites W1962053270 @default.
- W2957317778 cites W1964406861 @default.
- W2957317778 cites W1985114196 @default.
- W2957317778 cites W1986239889 @default.
- W2957317778 cites W2000200149 @default.
- W2957317778 cites W2018312021 @default.
- W2957317778 cites W2029988110 @default.
- W2957317778 cites W2035242414 @default.
- W2957317778 cites W2064596684 @default.
- W2957317778 cites W2070309044 @default.
- W2957317778 cites W2073970992 @default.
- W2957317778 cites W2075328639 @default.
- W2957317778 cites W2088059049 @default.
- W2957317778 cites W2099347696 @default.
- W2957317778 cites W2105402829 @default.
- W2957317778 cites W2112539822 @default.
- W2957317778 cites W2116294018 @default.
- W2957317778 cites W2129070711 @default.
- W2957317778 cites W2148505233 @default.
- W2957317778 cites W2164594981 @default.
- W2957317778 cites W219413854 @default.
- W2957317778 cites W2302178676 @default.
- W2957317778 cites W2325997123 @default.
- W2957317778 cites W2414522883 @default.
- W2957317778 cites W2505262691 @default.
- W2957317778 cites W2518680800 @default.
- W2957317778 cites W2529078862 @default.
- W2957317778 cites W2535971730 @default.
- W2957317778 cites W2582771388 @default.
- W2957317778 cites W2605143850 @default.
- W2957317778 cites W2620980389 @default.
- W2957317778 cites W2708881200 @default.
- W2957317778 cites W2728507335 @default.
- W2957317778 cites W2766629296 @default.
- W2957317778 cites W2766726202 @default.
- W2957317778 cites W2781511013 @default.
- W2957317778 cites W2888343535 @default.
- W2957317778 cites W907288685 @default.
- W2957317778 doi "https://doi.org/10.1016/j.energy.2019.07.094" @default.
- W2957317778 hasPublicationYear "2019" @default.
- W2957317778 type Work @default.
- W2957317778 sameAs 2957317778 @default.
- W2957317778 citedByCount "8" @default.
- W2957317778 countsByYear W29573177782019 @default.
- W2957317778 countsByYear W29573177782021 @default.
- W2957317778 countsByYear W29573177782022 @default.
- W2957317778 countsByYear W29573177782023 @default.
- W2957317778 crossrefType "journal-article" @default.
- W2957317778 hasAuthorship W2957317778A5042949953 @default.
- W2957317778 hasAuthorship W2957317778A5067377708 @default.
- W2957317778 hasConcept C119599485 @default.
- W2957317778 hasConcept C121332964 @default.
- W2957317778 hasConcept C127413603 @default.
- W2957317778 hasConcept C131097465 @default.
- W2957317778 hasConcept C131929883 @default.
- W2957317778 hasConcept C161790260 @default.
- W2957317778 hasConcept C178790620 @default.
- W2957317778 hasConcept C181258405 @default.
- W2957317778 hasConcept C185592680 @default.
- W2957317778 hasConcept C194439259 @default.
- W2957317778 hasConcept C21880701 @default.
- W2957317778 hasConcept C2776382133 @default.
- W2957317778 hasConcept C2780165032 @default.
- W2957317778 hasConcept C518851703 @default.
- W2957317778 hasConcept C540031477 @default.
- W2957317778 hasConcept C548081761 @default.
- W2957317778 hasConcept C97355855 @default.
- W2957317778 hasConceptScore W2957317778C119599485 @default.
- W2957317778 hasConceptScore W2957317778C121332964 @default.
- W2957317778 hasConceptScore W2957317778C127413603 @default.
- W2957317778 hasConceptScore W2957317778C131097465 @default.
- W2957317778 hasConceptScore W2957317778C131929883 @default.
- W2957317778 hasConceptScore W2957317778C161790260 @default.
- W2957317778 hasConceptScore W2957317778C178790620 @default.
- W2957317778 hasConceptScore W2957317778C181258405 @default.
- W2957317778 hasConceptScore W2957317778C185592680 @default.
- W2957317778 hasConceptScore W2957317778C194439259 @default.
- W2957317778 hasConceptScore W2957317778C21880701 @default.
- W2957317778 hasConceptScore W2957317778C2776382133 @default.
- W2957317778 hasConceptScore W2957317778C2780165032 @default.
- W2957317778 hasConceptScore W2957317778C518851703 @default.
- W2957317778 hasConceptScore W2957317778C540031477 @default.
- W2957317778 hasConceptScore W2957317778C548081761 @default.
- W2957317778 hasConceptScore W2957317778C97355855 @default.
- W2957317778 hasFunder F4320321001 @default.
- W2957317778 hasLocation W29573177781 @default.
- W2957317778 hasOpenAccess W2957317778 @default.
- W2957317778 hasPrimaryLocation W29573177781 @default.
- W2957317778 hasRelatedWork W1527445753 @default.
- W2957317778 hasRelatedWork W2034002333 @default.
- W2957317778 hasRelatedWork W2052865012 @default.