Matches in SemOpenAlex for { <https://semopenalex.org/work/W2957426770> ?p ?o ?g. }
Showing items 1 to 60 of
60
with 100 items per page.
- W2957426770 abstract "Abstrak : Penjadwalan praktikum merupakan proses penyusunan jadwal pelaksanaan yang menginformasikan sejumlah mata kuliah, dosen yang mengajar, ruang, serta waktu kegiatan perkuliahan di laboratorium. Perlu diperhatikan beberapa aspek untuk menyusun jadwal perkuliahan yang sesuai dengan kebutuhan. Aspek yang perlu diperhatikan antara lain adalah aspek dari dosen yang mengajar, mata kuliah yang diajar. Penyusunan jadwal secara manual cenderung membutuhkan waktu yang lebih lama dan ketelitian yang cukup bagi pembuat jadwal. Untuk dapat membuat jadwal yang optional, dibutuhkan metode optimasi. Pada penelitian ini, akan diuji coba metode optimasi dalam pembuatan jadwal praktikum yaitu Algoritma Genetika. Algoritma genetika merupakan pendekatan komputasional untuk menyelesaikan masalah yang dimodelkan dengan proses biologi dari evolusi. Parameter-parameter Algoritma Genetika yang mempengaruhi jadwal perkuliahan yang dihasilkan adalah jumlah individu, probabilitas crossover, probabilitas mutasi serta metode seleksi, crossover yang digunakan. Pengujian dilakukan dengan cara mencari nilai parameter-parameter algoritma genetika yang paling optimal dalam jadwal perkuliahan. Hasil penelitian menunjukkan bahwa dengan jumlah generasi, jumlah individu, probabilitas crossover dan probabilitas mutasi dapat menghasilkan jadwal yang paling optimal.Kata kunci: Optimasi, Penjadwalan, Seleksi, Crossover, Mutasi, Algoritma GenetikaAbstract : Practical scheduling is the process of preparation of an implementation schedule that informs a number of courses, lecturers who teach, space, and time of lecture activities in the laboratory. It should be noted several aspects to arrange lecture schedule in accordance with the needs. Aspects that need to be considered include aspects of lecturers who teach, courses taught. Manual scheduling tends to take longer and enough accuracy for the schedule maker. To be able to create an optional schedule, an optimization method is required. In this research, will be tested the optimization method in the preparation of the practice schedule that is Genetic Algorithm. Genetic algorithms are a computational approach to solving problems modeled by biological processes of evolution. The parameters of the Genetic Algorithm affecting the course schedule are the number of individuals, the probability of crossover, the probability of mutation and the method of selection, the crossover used. Testing is done by finding the most optimal parameter values of genetic algorithm in lecture schedule. The results show that with the number of generations, the number of individuals, the probability of crossover and the probability of mutation can produce the most optimal schedule. Keywords: Optimization, Scheduling, Selection, Crossover, Mutation, Genetic Algorithm" @default.
- W2957426770 created "2019-07-23" @default.
- W2957426770 creator A5015273030 @default.
- W2957426770 creator A5074244823 @default.
- W2957426770 creator A5077911861 @default.
- W2957426770 date "2018-07-31" @default.
- W2957426770 modified "2023-10-16" @default.
- W2957426770 title "Membangun Sistem Informasi Penjadwalan Dengan Metode Algoritma Genetika Pada Laboratorium Teknik Informatika Universitas Muhammadiyah Maluku Utara" @default.
- W2957426770 doi "https://doi.org/10.47324/ilkominfo.v1i2.13" @default.
- W2957426770 hasPublicationYear "2018" @default.
- W2957426770 type Work @default.
- W2957426770 sameAs 2957426770 @default.
- W2957426770 citedByCount "1" @default.
- W2957426770 countsByYear W29574267702023 @default.
- W2957426770 crossrefType "journal-article" @default.
- W2957426770 hasAuthorship W2957426770A5015273030 @default.
- W2957426770 hasAuthorship W2957426770A5074244823 @default.
- W2957426770 hasAuthorship W2957426770A5077911861 @default.
- W2957426770 hasBestOaLocation W29574267701 @default.
- W2957426770 hasConcept C111919701 @default.
- W2957426770 hasConcept C122507166 @default.
- W2957426770 hasConcept C126255220 @default.
- W2957426770 hasConcept C138885662 @default.
- W2957426770 hasConcept C154945302 @default.
- W2957426770 hasConcept C15708023 @default.
- W2957426770 hasConcept C206729178 @default.
- W2957426770 hasConcept C33923547 @default.
- W2957426770 hasConcept C41008148 @default.
- W2957426770 hasConcept C42475967 @default.
- W2957426770 hasConcept C68387754 @default.
- W2957426770 hasConceptScore W2957426770C111919701 @default.
- W2957426770 hasConceptScore W2957426770C122507166 @default.
- W2957426770 hasConceptScore W2957426770C126255220 @default.
- W2957426770 hasConceptScore W2957426770C138885662 @default.
- W2957426770 hasConceptScore W2957426770C154945302 @default.
- W2957426770 hasConceptScore W2957426770C15708023 @default.
- W2957426770 hasConceptScore W2957426770C206729178 @default.
- W2957426770 hasConceptScore W2957426770C33923547 @default.
- W2957426770 hasConceptScore W2957426770C41008148 @default.
- W2957426770 hasConceptScore W2957426770C42475967 @default.
- W2957426770 hasConceptScore W2957426770C68387754 @default.
- W2957426770 hasIssue "2" @default.
- W2957426770 hasLocation W29574267701 @default.
- W2957426770 hasOpenAccess W2957426770 @default.
- W2957426770 hasPrimaryLocation W29574267701 @default.
- W2957426770 hasRelatedWork W136212090 @default.
- W2957426770 hasRelatedWork W2011541570 @default.
- W2957426770 hasRelatedWork W2391116541 @default.
- W2957426770 hasRelatedWork W2568276500 @default.
- W2957426770 hasRelatedWork W2625545162 @default.
- W2957426770 hasRelatedWork W2739968173 @default.
- W2957426770 hasRelatedWork W2765703277 @default.
- W2957426770 hasRelatedWork W2895904586 @default.
- W2957426770 hasRelatedWork W3201209520 @default.
- W2957426770 hasRelatedWork W1758230612 @default.
- W2957426770 hasVolume "1" @default.
- W2957426770 isParatext "false" @default.
- W2957426770 isRetracted "false" @default.
- W2957426770 magId "2957426770" @default.
- W2957426770 workType "article" @default.