Matches in SemOpenAlex for { <https://semopenalex.org/work/W2957430851> ?p ?o ?g. }
- W2957430851 endingPage "e86" @default.
- W2957430851 startingPage "e81" @default.
- W2957430851 abstract "Background The purpose of this study was to develop a deep learning classification approach to distinguish cancerous from noncancerous regions within optical coherence tomography (OCT) images of breast tissue for potential use in an intraoperative setting for margin assessment. Methods A custom ultrahigh-resolution OCT (UHR-OCT) system with an axial resolution of 2.7 μm and a lateral resolution of 5.5 μm was used in this study. The algorithm used an A-scan-based classification scheme and the convolutional neural network (CNN) was implemented using an 11-layer architecture consisting of serial 3 × 3 convolution kernels. Four tissue types were classified, including adipose, stroma, ductal carcinoma in situ, and invasive ductal carcinoma. Results The binary classification of cancer versus noncancer with the proposed CNN achieved 94% accuracy, 96% sensitivity, and 92% specificity. The mean five-fold validation F1 score was highest for invasive ductal carcinoma (mean standard deviation, 0.89 ± 0.09) and adipose (0.79 ± 0.17), followed by stroma (0.74 ± 0.18), and ductal carcinoma in situ (0.65 ± 0.15). Conclusion It is feasible to use CNN based algorithm to accurately distinguish cancerous regions in OCT images. This fully automated method can overcome limitations of manual interpretation including interobserver variability and speed of interpretation and may enable real-time intraoperative margin assessment. The purpose of this study was to develop a deep learning classification approach to distinguish cancerous from noncancerous regions within optical coherence tomography (OCT) images of breast tissue for potential use in an intraoperative setting for margin assessment. A custom ultrahigh-resolution OCT (UHR-OCT) system with an axial resolution of 2.7 μm and a lateral resolution of 5.5 μm was used in this study. The algorithm used an A-scan-based classification scheme and the convolutional neural network (CNN) was implemented using an 11-layer architecture consisting of serial 3 × 3 convolution kernels. Four tissue types were classified, including adipose, stroma, ductal carcinoma in situ, and invasive ductal carcinoma. The binary classification of cancer versus noncancer with the proposed CNN achieved 94% accuracy, 96% sensitivity, and 92% specificity. The mean five-fold validation F1 score was highest for invasive ductal carcinoma (mean standard deviation, 0.89 ± 0.09) and adipose (0.79 ± 0.17), followed by stroma (0.74 ± 0.18), and ductal carcinoma in situ (0.65 ± 0.15). It is feasible to use CNN based algorithm to accurately distinguish cancerous regions in OCT images. This fully automated method can overcome limitations of manual interpretation including interobserver variability and speed of interpretation and may enable real-time intraoperative margin assessment." @default.
- W2957430851 created "2019-07-23" @default.
- W2957430851 creator A5020627937 @default.
- W2957430851 creator A5023047425 @default.
- W2957430851 creator A5024597682 @default.
- W2957430851 creator A5036302879 @default.
- W2957430851 creator A5037746303 @default.
- W2957430851 creator A5049843981 @default.
- W2957430851 creator A5067600976 @default.
- W2957430851 creator A5068159108 @default.
- W2957430851 creator A5084696219 @default.
- W2957430851 date "2020-05-01" @default.
- W2957430851 modified "2023-09-30" @default.
- W2957430851 title "Fully Automated Postlumpectomy Breast Margin Assessment Utilizing Convolutional Neural Network Based Optical Coherence Tomography Image Classification Method" @default.
- W2957430851 cites W115576369 @default.
- W2957430851 cites W1227880109 @default.
- W2957430851 cites W1969955460 @default.
- W2957430851 cites W1974958006 @default.
- W2957430851 cites W1993707310 @default.
- W2957430851 cites W2003932911 @default.
- W2957430851 cites W2005903771 @default.
- W2957430851 cites W2016808867 @default.
- W2957430851 cites W2035721564 @default.
- W2957430851 cites W2047733319 @default.
- W2957430851 cites W2055137332 @default.
- W2957430851 cites W2066481790 @default.
- W2957430851 cites W2075557288 @default.
- W2957430851 cites W2077032065 @default.
- W2957430851 cites W2081676452 @default.
- W2957430851 cites W2084683760 @default.
- W2957430851 cites W2084782093 @default.
- W2957430851 cites W2087681061 @default.
- W2957430851 cites W2089039828 @default.
- W2957430851 cites W2107885148 @default.
- W2957430851 cites W2108563286 @default.
- W2957430851 cites W2114022098 @default.
- W2957430851 cites W2114155779 @default.
- W2957430851 cites W2134551849 @default.
- W2957430851 cites W2169752919 @default.
- W2957430851 cites W22040386 @default.
- W2957430851 cites W2305112631 @default.
- W2957430851 cites W2409650203 @default.
- W2957430851 cites W2418802570 @default.
- W2957430851 cites W2534074719 @default.
- W2957430851 cites W2581493794 @default.
- W2957430851 cites W2593030541 @default.
- W2957430851 cites W2770657274 @default.
- W2957430851 cites W2772723798 @default.
- W2957430851 cites W2792836735 @default.
- W2957430851 cites W2802190884 @default.
- W2957430851 cites W2867962572 @default.
- W2957430851 cites W2886281300 @default.
- W2957430851 cites W2887687623 @default.
- W2957430851 cites W2888646712 @default.
- W2957430851 cites W2949122205 @default.
- W2957430851 cites W2963323105 @default.
- W2957430851 doi "https://doi.org/10.1016/j.acra.2019.06.018" @default.
- W2957430851 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7456393" @default.
- W2957430851 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31324579" @default.
- W2957430851 hasPublicationYear "2020" @default.
- W2957430851 type Work @default.
- W2957430851 sameAs 2957430851 @default.
- W2957430851 citedByCount "23" @default.
- W2957430851 countsByYear W29574308512020 @default.
- W2957430851 countsByYear W29574308512021 @default.
- W2957430851 countsByYear W29574308512022 @default.
- W2957430851 countsByYear W29574308512023 @default.
- W2957430851 crossrefType "journal-article" @default.
- W2957430851 hasAuthorship W2957430851A5020627937 @default.
- W2957430851 hasAuthorship W2957430851A5023047425 @default.
- W2957430851 hasAuthorship W2957430851A5024597682 @default.
- W2957430851 hasAuthorship W2957430851A5036302879 @default.
- W2957430851 hasAuthorship W2957430851A5037746303 @default.
- W2957430851 hasAuthorship W2957430851A5049843981 @default.
- W2957430851 hasAuthorship W2957430851A5067600976 @default.
- W2957430851 hasAuthorship W2957430851A5068159108 @default.
- W2957430851 hasAuthorship W2957430851A5084696219 @default.
- W2957430851 hasBestOaLocation W29574308512 @default.
- W2957430851 hasConcept C108583219 @default.
- W2957430851 hasConcept C119857082 @default.
- W2957430851 hasConcept C121608353 @default.
- W2957430851 hasConcept C126322002 @default.
- W2957430851 hasConcept C126838900 @default.
- W2957430851 hasConcept C153180895 @default.
- W2957430851 hasConcept C154945302 @default.
- W2957430851 hasConcept C2778818243 @default.
- W2957430851 hasConcept C2780862961 @default.
- W2957430851 hasConcept C41008148 @default.
- W2957430851 hasConcept C530470458 @default.
- W2957430851 hasConcept C71924100 @default.
- W2957430851 hasConcept C774472 @default.
- W2957430851 hasConcept C81363708 @default.
- W2957430851 hasConceptScore W2957430851C108583219 @default.
- W2957430851 hasConceptScore W2957430851C119857082 @default.
- W2957430851 hasConceptScore W2957430851C121608353 @default.
- W2957430851 hasConceptScore W2957430851C126322002 @default.
- W2957430851 hasConceptScore W2957430851C126838900 @default.
- W2957430851 hasConceptScore W2957430851C153180895 @default.