Matches in SemOpenAlex for { <https://semopenalex.org/work/W2957600090> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W2957600090 abstract "This paper investigates the applicability of deep and machine learning techniques to perform beam selection in the uplink of a mmWave communication system. Specifically, we consider a hybrid beamforming setup comprising an analog beamforming (ABF) network followed by a zero-forcing baseband processing block. The goal is to select the optimal configuration for the ABF network bsed on the estimated angles-of-arrival (AoAs) and received powers. To that aim, we consider three machine/deep learning schemes: k-nearest neighbors (kNN), support vector classifiers (SVC), and the multilayer perceptron (MLP). We conduct an extensive performance evaluation to assess the impact of using the Capon or MUSIC methods to estimate the AoAs and powers, the size of the training dataset, the number of beamformers in the codebook, their beamwidth, or the number of active users. Computer simulations reveal that performance, in terms of classification accuracy and sum-rate, is very close to that achievable via exhaustive search." @default.
- W2957600090 created "2019-07-23" @default.
- W2957600090 creator A5011088746 @default.
- W2957600090 creator A5085560572 @default.
- W2957600090 date "2019-05-01" @default.
- W2957600090 modified "2023-10-06" @default.
- W2957600090 title "Data-Driven Beam Selection for mmWave Communications with Machine and Deep Learning: An Angle of Arrival-Based Approach" @default.
- W2957600090 cites W2477563955 @default.
- W2957600090 cites W2562947506 @default.
- W2957600090 cites W2734408173 @default.
- W2957600090 cites W2738272747 @default.
- W2957600090 cites W2790223875 @default.
- W2957600090 cites W2793446253 @default.
- W2957600090 cites W2898434483 @default.
- W2957600090 cites W2963145597 @default.
- W2957600090 cites W2963190722 @default.
- W2957600090 cites W2963487795 @default.
- W2957600090 cites W653761051 @default.
- W2957600090 doi "https://doi.org/10.1109/iccw.2019.8756991" @default.
- W2957600090 hasPublicationYear "2019" @default.
- W2957600090 type Work @default.
- W2957600090 sameAs 2957600090 @default.
- W2957600090 citedByCount "5" @default.
- W2957600090 countsByYear W29576000902020 @default.
- W2957600090 countsByYear W29576000902021 @default.
- W2957600090 countsByYear W29576000902022 @default.
- W2957600090 crossrefType "proceedings-article" @default.
- W2957600090 hasAuthorship W2957600090A5011088746 @default.
- W2957600090 hasAuthorship W2957600090A5085560572 @default.
- W2957600090 hasConcept C119857082 @default.
- W2957600090 hasConcept C127759330 @default.
- W2957600090 hasConcept C138660444 @default.
- W2957600090 hasConcept C153180895 @default.
- W2957600090 hasConcept C154945302 @default.
- W2957600090 hasConcept C179717631 @default.
- W2957600090 hasConcept C190060920 @default.
- W2957600090 hasConcept C21822782 @default.
- W2957600090 hasConcept C2776257435 @default.
- W2957600090 hasConcept C2780150128 @default.
- W2957600090 hasConcept C28490314 @default.
- W2957600090 hasConcept C41008148 @default.
- W2957600090 hasConcept C50644808 @default.
- W2957600090 hasConcept C54197355 @default.
- W2957600090 hasConcept C65165936 @default.
- W2957600090 hasConcept C76155785 @default.
- W2957600090 hasConcept C81917197 @default.
- W2957600090 hasConceptScore W2957600090C119857082 @default.
- W2957600090 hasConceptScore W2957600090C127759330 @default.
- W2957600090 hasConceptScore W2957600090C138660444 @default.
- W2957600090 hasConceptScore W2957600090C153180895 @default.
- W2957600090 hasConceptScore W2957600090C154945302 @default.
- W2957600090 hasConceptScore W2957600090C179717631 @default.
- W2957600090 hasConceptScore W2957600090C190060920 @default.
- W2957600090 hasConceptScore W2957600090C21822782 @default.
- W2957600090 hasConceptScore W2957600090C2776257435 @default.
- W2957600090 hasConceptScore W2957600090C2780150128 @default.
- W2957600090 hasConceptScore W2957600090C28490314 @default.
- W2957600090 hasConceptScore W2957600090C41008148 @default.
- W2957600090 hasConceptScore W2957600090C50644808 @default.
- W2957600090 hasConceptScore W2957600090C54197355 @default.
- W2957600090 hasConceptScore W2957600090C65165936 @default.
- W2957600090 hasConceptScore W2957600090C76155785 @default.
- W2957600090 hasConceptScore W2957600090C81917197 @default.
- W2957600090 hasLocation W29576000901 @default.
- W2957600090 hasOpenAccess W2957600090 @default.
- W2957600090 hasPrimaryLocation W29576000901 @default.
- W2957600090 hasRelatedWork W2032825607 @default.
- W2957600090 hasRelatedWork W2040776150 @default.
- W2957600090 hasRelatedWork W2091540876 @default.
- W2957600090 hasRelatedWork W2776817167 @default.
- W2957600090 hasRelatedWork W2913291195 @default.
- W2957600090 hasRelatedWork W2919332200 @default.
- W2957600090 hasRelatedWork W4214917784 @default.
- W2957600090 hasRelatedWork W4323914567 @default.
- W2957600090 hasRelatedWork W4366728347 @default.
- W2957600090 hasRelatedWork W4385800701 @default.
- W2957600090 isParatext "false" @default.
- W2957600090 isRetracted "false" @default.
- W2957600090 magId "2957600090" @default.
- W2957600090 workType "article" @default.