Matches in SemOpenAlex for { <https://semopenalex.org/work/W2957777391> ?p ?o ?g. }
- W2957777391 endingPage "96603" @default.
- W2957777391 startingPage "96594" @default.
- W2957777391 abstract "Deep learning has attracted growing interest for application to medical imaging, such as positron emission tomography (PET), due to its excellent performance. Convolutional neural networks (CNNs), a facet of deep learning requires large training-image datasets. This presents a challenge in a clinical setting because it is difficult to prepare large, high-quality patient-related datasets. Recently, the deep image prior (DIP) approach has been devised, based on the fact that CNN structures have the intrinsic ability to solve inverse problems such as denoising without pre-training and do not require the preparation of training datasets. Herein, we proposed the dynamic PET image denoising using a DIP approach, with the PET data itself being used to reduce the statistical image noise. Static PET data were acquired for input to the network, with the dynamic PET images being handled as training labels, while the denoised dynamic PET images were represented by the network output. We applied the proposed DIP method to computer simulations and also to real data acquired from a living monkey brain with 18F-fluoro-2-deoxy-D-glucose (18F-FDG). As a simulation result, our DIP method produced less noisy and more accurate dynamic images than the other algorithms. Moreover, using real data, the DIP method was found to perform better than other types of post-denoising method in terms of contrast-to-noise ratio, and also maintain the contrast-to-noise ratio when resampling the list data to 1/5 and 1/10 of the original size, demonstrating that the DIP method could be applied to low-dose PET imaging. These results indicated that the proposed DIP method provides a promising means of post-denoising for dynamic PET images." @default.
- W2957777391 created "2019-07-23" @default.
- W2957777391 creator A5011203482 @default.
- W2957777391 creator A5037126765 @default.
- W2957777391 creator A5038010166 @default.
- W2957777391 creator A5049262522 @default.
- W2957777391 creator A5085686971 @default.
- W2957777391 date "2019-01-01" @default.
- W2957777391 modified "2023-10-13" @default.
- W2957777391 title "Dynamic PET Image Denoising Using Deep Convolutional Neural Networks Without Prior Training Datasets" @default.
- W2957777391 cites W1677182931 @default.
- W2957777391 cites W1973207880 @default.
- W2957777391 cites W1985614930 @default.
- W2957777391 cites W2002480337 @default.
- W2957777391 cites W2014351445 @default.
- W2957777391 cites W2015159529 @default.
- W2957777391 cites W2018099309 @default.
- W2957777391 cites W2024903557 @default.
- W2957777391 cites W2037922117 @default.
- W2957777391 cites W2052419043 @default.
- W2957777391 cites W2057023093 @default.
- W2957777391 cites W2062791478 @default.
- W2957777391 cites W2064208986 @default.
- W2957777391 cites W2065327936 @default.
- W2957777391 cites W2072007689 @default.
- W2957777391 cites W2097073572 @default.
- W2957777391 cites W2103559027 @default.
- W2957777391 cites W2131706886 @default.
- W2957777391 cites W2133665775 @default.
- W2957777391 cites W2134495751 @default.
- W2957777391 cites W2142592339 @default.
- W2957777391 cites W2154744699 @default.
- W2957777391 cites W2156994346 @default.
- W2957777391 cites W2161573058 @default.
- W2957777391 cites W2163014583 @default.
- W2957777391 cites W2168530812 @default.
- W2957777391 cites W2592929672 @default.
- W2957777391 cites W2731899572 @default.
- W2957777391 cites W2740577694 @default.
- W2957777391 cites W2758711313 @default.
- W2957777391 cites W2798538010 @default.
- W2957777391 cites W2892197820 @default.
- W2957777391 cites W2898241136 @default.
- W2957777391 cites W2906587342 @default.
- W2957777391 cites W2911494572 @default.
- W2957777391 cites W2920786521 @default.
- W2957777391 cites W2932500179 @default.
- W2957777391 cites W2963385325 @default.
- W2957777391 doi "https://doi.org/10.1109/access.2019.2929230" @default.
- W2957777391 hasPublicationYear "2019" @default.
- W2957777391 type Work @default.
- W2957777391 sameAs 2957777391 @default.
- W2957777391 citedByCount "74" @default.
- W2957777391 countsByYear W29577773912019 @default.
- W2957777391 countsByYear W29577773912020 @default.
- W2957777391 countsByYear W29577773912021 @default.
- W2957777391 countsByYear W29577773912022 @default.
- W2957777391 countsByYear W29577773912023 @default.
- W2957777391 crossrefType "journal-article" @default.
- W2957777391 hasAuthorship W2957777391A5011203482 @default.
- W2957777391 hasAuthorship W2957777391A5037126765 @default.
- W2957777391 hasAuthorship W2957777391A5038010166 @default.
- W2957777391 hasAuthorship W2957777391A5049262522 @default.
- W2957777391 hasAuthorship W2957777391A5085686971 @default.
- W2957777391 hasBestOaLocation W29577773911 @default.
- W2957777391 hasConcept C115961682 @default.
- W2957777391 hasConcept C121332964 @default.
- W2957777391 hasConcept C153180895 @default.
- W2957777391 hasConcept C153294291 @default.
- W2957777391 hasConcept C154945302 @default.
- W2957777391 hasConcept C163294075 @default.
- W2957777391 hasConcept C2777211547 @default.
- W2957777391 hasConcept C2983327147 @default.
- W2957777391 hasConcept C31972630 @default.
- W2957777391 hasConcept C41008148 @default.
- W2957777391 hasConcept C81363708 @default.
- W2957777391 hasConceptScore W2957777391C115961682 @default.
- W2957777391 hasConceptScore W2957777391C121332964 @default.
- W2957777391 hasConceptScore W2957777391C153180895 @default.
- W2957777391 hasConceptScore W2957777391C153294291 @default.
- W2957777391 hasConceptScore W2957777391C154945302 @default.
- W2957777391 hasConceptScore W2957777391C163294075 @default.
- W2957777391 hasConceptScore W2957777391C2777211547 @default.
- W2957777391 hasConceptScore W2957777391C2983327147 @default.
- W2957777391 hasConceptScore W2957777391C31972630 @default.
- W2957777391 hasConceptScore W2957777391C41008148 @default.
- W2957777391 hasConceptScore W2957777391C81363708 @default.
- W2957777391 hasFunder F4320326723 @default.
- W2957777391 hasLocation W29577773911 @default.
- W2957777391 hasOpenAccess W2957777391 @default.
- W2957777391 hasPrimaryLocation W29577773911 @default.
- W2957777391 hasRelatedWork W2175746458 @default.
- W2957777391 hasRelatedWork W2483420468 @default.
- W2957777391 hasRelatedWork W2732542196 @default.
- W2957777391 hasRelatedWork W2738221750 @default.
- W2957777391 hasRelatedWork W2760085659 @default.
- W2957777391 hasRelatedWork W2912288872 @default.
- W2957777391 hasRelatedWork W3012978760 @default.