Matches in SemOpenAlex for { <https://semopenalex.org/work/W2957831738> ?p ?o ?g. }
- W2957831738 endingPage "314" @default.
- W2957831738 startingPage "302" @default.
- W2957831738 abstract "The vehicle to pedestrian (V2P) applications will enable safety, mobility, and environmental advancements for the vulnerable roadway user (VRU) that current technologies are unable to provide. The present research aims to explore the use of random parameters in logit models to examine factors that significantly influence injury severity of VRU involved crashes. Two types of logit models, the mixed generalized ordered logit (MGOL) models and mixed logit models are proposed to provide insights on reducing injury severities of pedestrian and bicyclist involved crashes and benefit amending current V2P applications to address the special safety needs and challenges of these VRUs. Based on 9180 pedestrian involved crashes and 1402 bicyclist involved crashes from the Fatality Analysis Reporting System (FARS), the measure of injury severities – time-to-death is considered as the independent variables to capture a more comprehensive picture of events after a crash occurs. By comparing to the ordered logit models and the multinomial logit models, the effectiveness and appropriateness of the proposed models are verified through two perspectives – goodness of fit and predictive power. The modelling results show that the injury severity of VRU involved crashes is significantly associated with involved non-motorist characteristics (age and police reported alcohol involvement), involved motorist characteristics (drunk drivers, previous recorded crashes, number of occupants), involved vehicle characteristics (vehicle body type, vehicle model year, travel speed), roadway characteristics (interstate, junction, roadway profile), and environmental characteristics (light and weather condition). Among these significant factors, the number of occupants, vehicle body type, interstate, and junction result in random parameters, which capture and reflect the unobserved heterogeneity across sampled observations. The analyses of under-researched aspects of VRU involved crashes, that is time-to-death, help us develop a deeper understanding of the consequences of injury and ultimately health and social costs. The findings indicate that the proposed MGOL models and mixed logit models can account for the heterogeneity issues in crash data due to the unobserved factors. In addition, the injury severity models that incorporate the random parameter features can reveal new insights and have superior goodness of fit." @default.
- W2957831738 created "2019-07-23" @default.
- W2957831738 creator A5015918478 @default.
- W2957831738 creator A5039155779 @default.
- W2957831738 creator A5051933409 @default.
- W2957831738 creator A5081982909 @default.
- W2957831738 date "2019-06-06" @default.
- W2957831738 modified "2023-10-16" @default.
- W2957831738 title "Exploring the factors contribute to the injury severities of vulnerable roadway user involved crashes" @default.
- W2957831738 cites W1945404035 @default.
- W2957831738 cites W1972913097 @default.
- W2957831738 cites W2008909284 @default.
- W2957831738 cites W2016671390 @default.
- W2957831738 cites W2023131190 @default.
- W2957831738 cites W2026600011 @default.
- W2957831738 cites W2028996744 @default.
- W2957831738 cites W2042741039 @default.
- W2957831738 cites W2051402569 @default.
- W2957831738 cites W2055842069 @default.
- W2957831738 cites W2061385696 @default.
- W2957831738 cites W2068035155 @default.
- W2957831738 cites W2073618340 @default.
- W2957831738 cites W2076978163 @default.
- W2957831738 cites W2095143969 @default.
- W2957831738 cites W2106949108 @default.
- W2957831738 cites W2117103468 @default.
- W2957831738 cites W2132735659 @default.
- W2957831738 cites W2136438270 @default.
- W2957831738 cites W2157461400 @default.
- W2957831738 cites W2161309151 @default.
- W2957831738 cites W2163608618 @default.
- W2957831738 cites W2164594255 @default.
- W2957831738 cites W2496157789 @default.
- W2957831738 cites W2528513072 @default.
- W2957831738 cites W2750077433 @default.
- W2957831738 cites W3021862730 @default.
- W2957831738 cites W4235161505 @default.
- W2957831738 doi "https://doi.org/10.1080/17457300.2019.1595665" @default.
- W2957831738 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31169068" @default.
- W2957831738 hasPublicationYear "2019" @default.
- W2957831738 type Work @default.
- W2957831738 sameAs 2957831738 @default.
- W2957831738 citedByCount "8" @default.
- W2957831738 countsByYear W29578317382020 @default.
- W2957831738 countsByYear W29578317382021 @default.
- W2957831738 countsByYear W29578317382022 @default.
- W2957831738 countsByYear W29578317382023 @default.
- W2957831738 crossrefType "journal-article" @default.
- W2957831738 hasAuthorship W2957831738A5015918478 @default.
- W2957831738 hasAuthorship W2957831738A5039155779 @default.
- W2957831738 hasAuthorship W2957831738A5051933409 @default.
- W2957831738 hasAuthorship W2957831738A5081982909 @default.
- W2957831738 hasConcept C105795698 @default.
- W2957831738 hasConcept C117568660 @default.
- W2957831738 hasConcept C127413603 @default.
- W2957831738 hasConcept C136764020 @default.
- W2957831738 hasConcept C140331021 @default.
- W2957831738 hasConcept C149782125 @default.
- W2957831738 hasConcept C151956035 @default.
- W2957831738 hasConcept C161521259 @default.
- W2957831738 hasConcept C183469790 @default.
- W2957831738 hasConcept C199360897 @default.
- W2957831738 hasConcept C22212356 @default.
- W2957831738 hasConcept C2777113093 @default.
- W2957831738 hasConcept C3017944768 @default.
- W2957831738 hasConcept C33923547 @default.
- W2957831738 hasConcept C41008148 @default.
- W2957831738 hasConcept C71924100 @default.
- W2957831738 hasConcept C95057490 @default.
- W2957831738 hasConcept C99454951 @default.
- W2957831738 hasConceptScore W2957831738C105795698 @default.
- W2957831738 hasConceptScore W2957831738C117568660 @default.
- W2957831738 hasConceptScore W2957831738C127413603 @default.
- W2957831738 hasConceptScore W2957831738C136764020 @default.
- W2957831738 hasConceptScore W2957831738C140331021 @default.
- W2957831738 hasConceptScore W2957831738C149782125 @default.
- W2957831738 hasConceptScore W2957831738C151956035 @default.
- W2957831738 hasConceptScore W2957831738C161521259 @default.
- W2957831738 hasConceptScore W2957831738C183469790 @default.
- W2957831738 hasConceptScore W2957831738C199360897 @default.
- W2957831738 hasConceptScore W2957831738C22212356 @default.
- W2957831738 hasConceptScore W2957831738C2777113093 @default.
- W2957831738 hasConceptScore W2957831738C3017944768 @default.
- W2957831738 hasConceptScore W2957831738C33923547 @default.
- W2957831738 hasConceptScore W2957831738C41008148 @default.
- W2957831738 hasConceptScore W2957831738C71924100 @default.
- W2957831738 hasConceptScore W2957831738C95057490 @default.
- W2957831738 hasConceptScore W2957831738C99454951 @default.
- W2957831738 hasFunder F4320335787 @default.
- W2957831738 hasIssue "3" @default.
- W2957831738 hasLocation W29578317381 @default.
- W2957831738 hasLocation W29578317382 @default.
- W2957831738 hasOpenAccess W2957831738 @default.
- W2957831738 hasPrimaryLocation W29578317381 @default.
- W2957831738 hasRelatedWork W1497785412 @default.
- W2957831738 hasRelatedWork W2334715211 @default.
- W2957831738 hasRelatedWork W234952215 @default.
- W2957831738 hasRelatedWork W2778625752 @default.