Matches in SemOpenAlex for { <https://semopenalex.org/work/W2958456210> ?p ?o ?g. }
- W2958456210 endingPage "104836" @default.
- W2958456210 startingPage "104836" @default.
- W2958456210 abstract "Abstract Neural network algorithm (NNA) is one of the newest meta-heuristic algorithms, which is inspired by biological nervous systems and artificial neural networks. Benefiting from the unique structure of artificial neural networks, NNA has good global search ability. However, slow convergence is its drawback that restricts its practical application. Teaching–learning-based optimization (TLBO) is an algorithm without any effort for fine tuning initial parameters, which has fast convergence speed while it is easy to fall into local optimum in solving complex global optimization problems. Considering the features of NNA and TLBO, an effective hybrid method based on TLBO and NNA, named TLNNA, is proposed for solving engineering optimization problems. The performance of TLNNA for 30 well-known unconstrained benchmark functions and 4 challenging engineering optimization problems is examined and the optimization results are compared with other competitive meta-heuristic algorithms. Such comparisons suggest that TLNNA has not only good global search ability of NNA but also fast convergence speed of TLBO and is more successful for most test problems in terms of solution quality and computational efficiency." @default.
- W2958456210 created "2019-07-23" @default.
- W2958456210 creator A5003614883 @default.
- W2958456210 creator A5024105879 @default.
- W2958456210 creator A5060451316 @default.
- W2958456210 date "2020-01-01" @default.
- W2958456210 modified "2023-10-09" @default.
- W2958456210 title "Hybrid teaching–learning-based optimization and neural network algorithm for engineering design optimization problems" @default.
- W2958456210 cites W1075626806 @default.
- W2958456210 cites W1424196965 @default.
- W2958456210 cites W1595159159 @default.
- W2958456210 cites W1965802006 @default.
- W2958456210 cites W1999284878 @default.
- W2958456210 cites W2000398141 @default.
- W2958456210 cites W2001422417 @default.
- W2958456210 cites W2007351764 @default.
- W2958456210 cites W2012115555 @default.
- W2958456210 cites W2013203042 @default.
- W2958456210 cites W2015808650 @default.
- W2958456210 cites W2038636021 @default.
- W2958456210 cites W2038984515 @default.
- W2958456210 cites W2045507811 @default.
- W2958456210 cites W2061438946 @default.
- W2958456210 cites W2074194260 @default.
- W2958456210 cites W2096166399 @default.
- W2958456210 cites W2096524645 @default.
- W2958456210 cites W2096673585 @default.
- W2958456210 cites W2102343719 @default.
- W2958456210 cites W2116314764 @default.
- W2958456210 cites W2117976551 @default.
- W2958456210 cites W2123342507 @default.
- W2958456210 cites W2143055330 @default.
- W2958456210 cites W2147271386 @default.
- W2958456210 cites W2149815769 @default.
- W2958456210 cites W2150382849 @default.
- W2958456210 cites W2151554678 @default.
- W2958456210 cites W2155370091 @default.
- W2958456210 cites W2168074109 @default.
- W2958456210 cites W2168081761 @default.
- W2958456210 cites W2221148967 @default.
- W2958456210 cites W2232317135 @default.
- W2958456210 cites W2290883490 @default.
- W2958456210 cites W2343090116 @default.
- W2958456210 cites W2465078833 @default.
- W2958456210 cites W2529976425 @default.
- W2958456210 cites W2725810391 @default.
- W2958456210 cites W2738900493 @default.
- W2958456210 cites W2763546604 @default.
- W2958456210 cites W2765467631 @default.
- W2958456210 cites W2770884750 @default.
- W2958456210 cites W2772202816 @default.
- W2958456210 cites W2774811664 @default.
- W2958456210 cites W2790332992 @default.
- W2958456210 cites W2790925524 @default.
- W2958456210 cites W2797756395 @default.
- W2958456210 cites W2802384355 @default.
- W2958456210 cites W2802713807 @default.
- W2958456210 cites W2806408894 @default.
- W2958456210 cites W2830592823 @default.
- W2958456210 cites W2883800310 @default.
- W2958456210 cites W2885770227 @default.
- W2958456210 cites W2886499297 @default.
- W2958456210 cites W2889037094 @default.
- W2958456210 cites W2896314053 @default.
- W2958456210 cites W2897156932 @default.
- W2958456210 cites W2909147580 @default.
- W2958456210 cites W2915509563 @default.
- W2958456210 cites W2916784550 @default.
- W2958456210 cites W2922656120 @default.
- W2958456210 doi "https://doi.org/10.1016/j.knosys.2019.07.007" @default.
- W2958456210 hasPublicationYear "2020" @default.
- W2958456210 type Work @default.
- W2958456210 sameAs 2958456210 @default.
- W2958456210 citedByCount "79" @default.
- W2958456210 countsByYear W29584562102019 @default.
- W2958456210 countsByYear W29584562102020 @default.
- W2958456210 countsByYear W29584562102021 @default.
- W2958456210 countsByYear W29584562102022 @default.
- W2958456210 countsByYear W29584562102023 @default.
- W2958456210 crossrefType "journal-article" @default.
- W2958456210 hasAuthorship W2958456210A5003614883 @default.
- W2958456210 hasAuthorship W2958456210A5024105879 @default.
- W2958456210 hasAuthorship W2958456210A5060451316 @default.
- W2958456210 hasConcept C110850998 @default.
- W2958456210 hasConcept C11413529 @default.
- W2958456210 hasConcept C119857082 @default.
- W2958456210 hasConcept C126255220 @default.
- W2958456210 hasConcept C137836250 @default.
- W2958456210 hasConcept C154945302 @default.
- W2958456210 hasConcept C2987595161 @default.
- W2958456210 hasConcept C33923547 @default.
- W2958456210 hasConcept C41008148 @default.
- W2958456210 hasConcept C50644808 @default.
- W2958456210 hasConceptScore W2958456210C110850998 @default.
- W2958456210 hasConceptScore W2958456210C11413529 @default.
- W2958456210 hasConceptScore W2958456210C119857082 @default.
- W2958456210 hasConceptScore W2958456210C126255220 @default.
- W2958456210 hasConceptScore W2958456210C137836250 @default.