Matches in SemOpenAlex for { <https://semopenalex.org/work/W2958642777> ?p ?o ?g. }
- W2958642777 abstract "Artificial neural networks are based on mathematical models of biological networks, but it is not clear how similar these two networks are. We have recently demonstrated that we can mechanically manipulate single neurons and create functioning synapses. Here, we build on this discovery and investigate the feasibility and time scales to build an artificial neural network with biological neurons. To achieve this, we characterized the dynamics and forces when pulling functional axonal neurites using a micromanipulation technique with maximum speeds about 300 times faster than the average natural growth rate of 0.0017μm/s. We find that the maximum force required to initiate and extend the neurites is about 1nN. The dynamics of the mechanical extension of the neurite is well described by many elastic springs and viscous dashpots in series. Interestingly, we find that the transport networks, specifically the actin network, lags behind the mechanically pulled structure. These insights could potentially open a new avenue to facilitate and encourage neuronal regrowth not relying on chemical queues. The extracted mechanical parameters and timescales characterize the neurite growth. We predict that it should be possible to use a magnetic trap to wire an artificial network such as a multi-layer perceptron in 17 hours. Once wired, we believe the biological neural network could be trained to process a hand-written digit using artificial neural network concepts applied to biological systems. We show how one could test the stability and robustness of this network by axotomizing (i.e. cutting) specific axons and reconnecting them using mechanical manipulation." @default.
- W2958642777 created "2019-07-23" @default.
- W2958642777 creator A5044862533 @default.
- W2958642777 creator A5045452834 @default.
- W2958642777 creator A5057412378 @default.
- W2958642777 creator A5062970986 @default.
- W2958642777 creator A5067388420 @default.
- W2958642777 creator A5081818835 @default.
- W2958642777 date "2019-07-01" @default.
- W2958642777 modified "2023-09-27" @default.
- W2958642777 title "Building an artificial neural network with neurons" @default.
- W2958642777 cites W1514853588 @default.
- W2958642777 cites W1585886861 @default.
- W2958642777 cites W1733248925 @default.
- W2958642777 cites W1880474948 @default.
- W2958642777 cites W1965557245 @default.
- W2958642777 cites W1969322445 @default.
- W2958642777 cites W1979315574 @default.
- W2958642777 cites W1987636437 @default.
- W2958642777 cites W1992801587 @default.
- W2958642777 cites W1995887996 @default.
- W2958642777 cites W2009782005 @default.
- W2958642777 cites W2014036626 @default.
- W2958642777 cites W2025745664 @default.
- W2958642777 cites W2027538679 @default.
- W2958642777 cites W2035282767 @default.
- W2958642777 cites W2040092971 @default.
- W2958642777 cites W2042532717 @default.
- W2958642777 cites W2052334135 @default.
- W2958642777 cites W2052935503 @default.
- W2958642777 cites W2061405268 @default.
- W2958642777 cites W2062087600 @default.
- W2958642777 cites W2067013554 @default.
- W2958642777 cites W2081742790 @default.
- W2958642777 cites W2082877303 @default.
- W2958642777 cites W2106141884 @default.
- W2958642777 cites W2109208582 @default.
- W2958642777 cites W2112796928 @default.
- W2958642777 cites W2117228527 @default.
- W2958642777 cites W2119126891 @default.
- W2958642777 cites W2126117726 @default.
- W2958642777 cites W2130358104 @default.
- W2958642777 cites W2138478503 @default.
- W2958642777 cites W2139500266 @default.
- W2958642777 cites W2147270524 @default.
- W2958642777 cites W2158208080 @default.
- W2958642777 cites W2260464130 @default.
- W2958642777 cites W2297313765 @default.
- W2958642777 cites W2336683768 @default.
- W2958642777 cites W2604286980 @default.
- W2958642777 cites W2605478976 @default.
- W2958642777 cites W2774021446 @default.
- W2958642777 cites W2951601487 @default.
- W2958642777 cites W4239976151 @default.
- W2958642777 doi "https://doi.org/10.1063/1.5086873" @default.
- W2958642777 hasPublicationYear "2019" @default.
- W2958642777 type Work @default.
- W2958642777 sameAs 2958642777 @default.
- W2958642777 citedByCount "5" @default.
- W2958642777 countsByYear W29586427772020 @default.
- W2958642777 countsByYear W29586427772021 @default.
- W2958642777 countsByYear W29586427772023 @default.
- W2958642777 crossrefType "journal-article" @default.
- W2958642777 hasAuthorship W2958642777A5044862533 @default.
- W2958642777 hasAuthorship W2958642777A5045452834 @default.
- W2958642777 hasAuthorship W2958642777A5057412378 @default.
- W2958642777 hasAuthorship W2958642777A5062970986 @default.
- W2958642777 hasAuthorship W2958642777A5067388420 @default.
- W2958642777 hasAuthorship W2958642777A5081818835 @default.
- W2958642777 hasBestOaLocation W29586427771 @default.
- W2958642777 hasConcept C104317684 @default.
- W2958642777 hasConcept C113246987 @default.
- W2958642777 hasConcept C118403218 @default.
- W2958642777 hasConcept C119857082 @default.
- W2958642777 hasConcept C154945302 @default.
- W2958642777 hasConcept C186060115 @default.
- W2958642777 hasConcept C202751555 @default.
- W2958642777 hasConcept C41008148 @default.
- W2958642777 hasConcept C50644808 @default.
- W2958642777 hasConcept C55493867 @default.
- W2958642777 hasConcept C60908668 @default.
- W2958642777 hasConcept C63479239 @default.
- W2958642777 hasConcept C86803240 @default.
- W2958642777 hasConceptScore W2958642777C104317684 @default.
- W2958642777 hasConceptScore W2958642777C113246987 @default.
- W2958642777 hasConceptScore W2958642777C118403218 @default.
- W2958642777 hasConceptScore W2958642777C119857082 @default.
- W2958642777 hasConceptScore W2958642777C154945302 @default.
- W2958642777 hasConceptScore W2958642777C186060115 @default.
- W2958642777 hasConceptScore W2958642777C202751555 @default.
- W2958642777 hasConceptScore W2958642777C41008148 @default.
- W2958642777 hasConceptScore W2958642777C50644808 @default.
- W2958642777 hasConceptScore W2958642777C55493867 @default.
- W2958642777 hasConceptScore W2958642777C60908668 @default.
- W2958642777 hasConceptScore W2958642777C63479239 @default.
- W2958642777 hasConceptScore W2958642777C86803240 @default.
- W2958642777 hasFunder F4320310638 @default.
- W2958642777 hasFunder F4320334506 @default.
- W2958642777 hasFunder F4320334593 @default.
- W2958642777 hasFunder F4320334841 @default.