Matches in SemOpenAlex for { <https://semopenalex.org/work/W2958666431> ?p ?o ?g. }
- W2958666431 endingPage "1707" @default.
- W2958666431 startingPage "1692" @default.
- W2958666431 abstract "Mixed frequency Bayesian vector autoregressions (MF-BVARs) allow forecasters to incorporate large numbers of time series that are observed at different intervals into forecasts of economic activity. This paper benchmarks the performances of MF-BVARs for forecasting U.S. real gross domestic product growth against surveys of professional forecasters and documents the influences of certain specification choices. We find that a medium–large MF-BVAR provides an attractive alternative to surveys at the medium-term forecast horizons that are of interest to central bankers and private sector analysts. Furthermore, we demonstrate that certain specification choices influence its performance strongly, such as model size, prior selection mechanisms, and modeling in levels versus growth rates." @default.
- W2958666431 created "2019-07-23" @default.
- W2958666431 creator A5009467458 @default.
- W2958666431 creator A5053350151 @default.
- W2958666431 creator A5083847933 @default.
- W2958666431 date "2019-10-01" @default.
- W2958666431 modified "2023-10-16" @default.
- W2958666431 title "Forecasting economic activity with mixed frequency BVARs" @default.
- W2958666431 cites W1515971793 @default.
- W2958666431 cites W1518940614 @default.
- W2958666431 cites W1523193234 @default.
- W2958666431 cites W1587521399 @default.
- W2958666431 cites W2000842688 @default.
- W2958666431 cites W2056186894 @default.
- W2958666431 cites W2098588523 @default.
- W2958666431 cites W2099036148 @default.
- W2958666431 cites W2114696677 @default.
- W2958666431 cites W2119035500 @default.
- W2958666431 cites W2124093518 @default.
- W2958666431 cites W2144031751 @default.
- W2958666431 cites W2148557226 @default.
- W2958666431 cites W2233673592 @default.
- W2958666431 cites W2614854554 @default.
- W2958666431 cites W2746323135 @default.
- W2958666431 cites W3121422851 @default.
- W2958666431 cites W3121748989 @default.
- W2958666431 cites W3123321000 @default.
- W2958666431 cites W3123711421 @default.
- W2958666431 cites W3125306694 @default.
- W2958666431 cites W4212795555 @default.
- W2958666431 doi "https://doi.org/10.1016/j.ijforecast.2019.02.010" @default.
- W2958666431 hasPublicationYear "2019" @default.
- W2958666431 type Work @default.
- W2958666431 sameAs 2958666431 @default.
- W2958666431 citedByCount "31" @default.
- W2958666431 countsByYear W29586664312019 @default.
- W2958666431 countsByYear W29586664312020 @default.
- W2958666431 countsByYear W29586664312021 @default.
- W2958666431 countsByYear W29586664312022 @default.
- W2958666431 countsByYear W29586664312023 @default.
- W2958666431 crossrefType "journal-article" @default.
- W2958666431 hasAuthorship W2958666431A5009467458 @default.
- W2958666431 hasAuthorship W2958666431A5053350151 @default.
- W2958666431 hasAuthorship W2958666431A5083847933 @default.
- W2958666431 hasConcept C107673813 @default.
- W2958666431 hasConcept C117222624 @default.
- W2958666431 hasConcept C121332964 @default.
- W2958666431 hasConcept C137703641 @default.
- W2958666431 hasConcept C139719470 @default.
- W2958666431 hasConcept C149782125 @default.
- W2958666431 hasConcept C154945302 @default.
- W2958666431 hasConcept C162324750 @default.
- W2958666431 hasConcept C175025494 @default.
- W2958666431 hasConcept C176230804 @default.
- W2958666431 hasConcept C2524010 @default.
- W2958666431 hasConcept C33923547 @default.
- W2958666431 hasConcept C41008148 @default.
- W2958666431 hasConcept C61797465 @default.
- W2958666431 hasConcept C62520636 @default.
- W2958666431 hasConcept C81917197 @default.
- W2958666431 hasConcept C90673727 @default.
- W2958666431 hasConcept C93959086 @default.
- W2958666431 hasConceptScore W2958666431C107673813 @default.
- W2958666431 hasConceptScore W2958666431C117222624 @default.
- W2958666431 hasConceptScore W2958666431C121332964 @default.
- W2958666431 hasConceptScore W2958666431C137703641 @default.
- W2958666431 hasConceptScore W2958666431C139719470 @default.
- W2958666431 hasConceptScore W2958666431C149782125 @default.
- W2958666431 hasConceptScore W2958666431C154945302 @default.
- W2958666431 hasConceptScore W2958666431C162324750 @default.
- W2958666431 hasConceptScore W2958666431C175025494 @default.
- W2958666431 hasConceptScore W2958666431C176230804 @default.
- W2958666431 hasConceptScore W2958666431C2524010 @default.
- W2958666431 hasConceptScore W2958666431C33923547 @default.
- W2958666431 hasConceptScore W2958666431C41008148 @default.
- W2958666431 hasConceptScore W2958666431C61797465 @default.
- W2958666431 hasConceptScore W2958666431C62520636 @default.
- W2958666431 hasConceptScore W2958666431C81917197 @default.
- W2958666431 hasConceptScore W2958666431C90673727 @default.
- W2958666431 hasConceptScore W2958666431C93959086 @default.
- W2958666431 hasIssue "4" @default.
- W2958666431 hasLocation W29586664311 @default.
- W2958666431 hasOpenAccess W2958666431 @default.
- W2958666431 hasPrimaryLocation W29586664311 @default.
- W2958666431 hasRelatedWork W1483972196 @default.
- W2958666431 hasRelatedWork W1490523589 @default.
- W2958666431 hasRelatedWork W1523570675 @default.
- W2958666431 hasRelatedWork W1551896853 @default.
- W2958666431 hasRelatedWork W1571724187 @default.
- W2958666431 hasRelatedWork W2078382796 @default.
- W2958666431 hasRelatedWork W2298913500 @default.
- W2958666431 hasRelatedWork W2773632143 @default.
- W2958666431 hasRelatedWork W3124265526 @default.
- W2958666431 hasRelatedWork W3125893372 @default.
- W2958666431 hasVolume "35" @default.
- W2958666431 isParatext "false" @default.
- W2958666431 isRetracted "false" @default.
- W2958666431 magId "2958666431" @default.