Matches in SemOpenAlex for { <https://semopenalex.org/work/W2958866730> ?p ?o ?g. }
- W2958866730 endingPage "107181" @default.
- W2958866730 startingPage "107181" @default.
- W2958866730 abstract "The present study focuses on simultaneous influence of graphene nanoplatelets (GNP) and hydroxyapatite (HAp) nanopowder on microstructural, wear, tensile and biofunctional behavior of UHMWPE based nanocomposites used in biomedical applications, with the aim to utilize GNP's mechanical strength and wear resistance, while benefitting from HAp's biocompatibility at the same time. 0.1, 0.5 and 1 wt% GNP with 10 wt% optimized concentration of HAp were added to the UHMWPE matrix through an easy two-step approach consisting of solvent mixing and ultrasonication in ethanol as a liquid media. The dried nanocomposite samples of powder were then hot pressed at an optimized temperature and pressure to ensure complete melting and flowing of the polymeric material. Tensile testing results indicated a 114% & 24% increase in elastic modulus and yield strength in the sample containing 1 wt% GNP and 10 wt% HAp, respectively, as compared to UHMWPE. However, the sample containing 0.5 wt% GNP showed greatest tensile performance with an increase of 101% and 31% improvement in elastic modulus and yield strength, which proves that the strengthening mechanism is influenced by the content of the reinforcement, especially in case of 2D reinforcing phases such as GNP. Microstructural analysis revealed the nucleating effect of GNPs on the crystalline structure of UHMWPE, to which the escalated mechanical properties could be attributed. Furthermore, the assessments disclosed the dependency of nucleating, and in consequence strengthening effect of GNPs to their concentration and apparent clustering threshold. Moreover, pin-on-disk tribological testing results showed a somewhat similar result for the coefficient of friction, which decreased by 50% with 1 wt% GNP, while the similar parameter for the sample containing 0.5 wt% GNP underwent 54% reduction. Whereas a steady decreasing pattern was observed in the case of wear rate with an 82% decrease in the sample containing 1 wt% GNP, coming to a conclusion that GNP is much more effective in improving wear properties rather than in mechanical strengthening. Biological examinations also demonstrated that HAp promises biocompatibility, osteoconductivity and the elimination of adverse cellular response, while cell adhesion was still dependent on the concentration and was affected adversely with increasing GNP. This destructive biological effect of GNPs was seemingly attributed to the functional groups of the material, or to the inherent edge-shaped structure by means of FTIR, wettability and compaction analyses." @default.
- W2958866730 created "2019-07-23" @default.
- W2958866730 creator A5043199242 @default.
- W2958866730 creator A5074855700 @default.
- W2958866730 creator A5085093513 @default.
- W2958866730 creator A5085729379 @default.
- W2958866730 date "2019-10-01" @default.
- W2958866730 modified "2023-09-26" @default.
- W2958866730 title "Optimizing tribological, tensile & in-vitro biofunctional properties of UHMWPE based nanocomposites with simultaneous incorporation of graphene nanoplatelets (GNP) & hydroxyapatite (HAp) via a facile approach for biomedical applications" @default.
- W2958866730 cites W1966137095 @default.
- W2958866730 cites W1967603475 @default.
- W2958866730 cites W1981469941 @default.
- W2958866730 cites W1988779265 @default.
- W2958866730 cites W1994857514 @default.
- W2958866730 cites W2000105557 @default.
- W2958866730 cites W2002356756 @default.
- W2958866730 cites W2003493056 @default.
- W2958866730 cites W2004543377 @default.
- W2958866730 cites W2007310629 @default.
- W2958866730 cites W2008850772 @default.
- W2958866730 cites W2010843511 @default.
- W2958866730 cites W2011660113 @default.
- W2958866730 cites W2017581710 @default.
- W2958866730 cites W2020694967 @default.
- W2958866730 cites W2021700562 @default.
- W2958866730 cites W2022057879 @default.
- W2958866730 cites W2024495440 @default.
- W2958866730 cites W2026377404 @default.
- W2958866730 cites W2030395791 @default.
- W2958866730 cites W2033862374 @default.
- W2958866730 cites W2037843283 @default.
- W2958866730 cites W2056305606 @default.
- W2958866730 cites W2056425872 @default.
- W2958866730 cites W2059827742 @default.
- W2958866730 cites W2066329729 @default.
- W2958866730 cites W2068645319 @default.
- W2958866730 cites W2073433745 @default.
- W2958866730 cites W2082240274 @default.
- W2958866730 cites W2087245353 @default.
- W2958866730 cites W2089905468 @default.
- W2958866730 cites W2099790117 @default.
- W2958866730 cites W2109807803 @default.
- W2958866730 cites W2112793450 @default.
- W2958866730 cites W2114959238 @default.
- W2958866730 cites W2144712928 @default.
- W2958866730 cites W2153462535 @default.
- W2958866730 cites W2163940679 @default.
- W2958866730 cites W2164574353 @default.
- W2958866730 cites W2168086940 @default.
- W2958866730 cites W2182596450 @default.
- W2958866730 cites W2291991370 @default.
- W2958866730 cites W2337228596 @default.
- W2958866730 cites W2465121038 @default.
- W2958866730 cites W2527989923 @default.
- W2958866730 cites W2553883349 @default.
- W2958866730 cites W2588540137 @default.
- W2958866730 cites W2599526570 @default.
- W2958866730 cites W2736441330 @default.
- W2958866730 cites W2745633746 @default.
- W2958866730 cites W2749901077 @default.
- W2958866730 cites W2766162251 @default.
- W2958866730 cites W2807979881 @default.
- W2958866730 cites W2887238720 @default.
- W2958866730 cites W2891244584 @default.
- W2958866730 cites W2921676717 @default.
- W2958866730 cites W2921725159 @default.
- W2958866730 cites W2936236562 @default.
- W2958866730 cites W2941997653 @default.
- W2958866730 cites W2997959094 @default.
- W2958866730 cites W3023622409 @default.
- W2958866730 doi "https://doi.org/10.1016/j.compositesb.2019.107181" @default.
- W2958866730 hasPublicationYear "2019" @default.
- W2958866730 type Work @default.
- W2958866730 sameAs 2958866730 @default.
- W2958866730 citedByCount "33" @default.
- W2958866730 countsByYear W29588667302020 @default.
- W2958866730 countsByYear W29588667302021 @default.
- W2958866730 countsByYear W29588667302022 @default.
- W2958866730 countsByYear W29588667302023 @default.
- W2958866730 crossrefType "journal-article" @default.
- W2958866730 hasAuthorship W2958866730A5043199242 @default.
- W2958866730 hasAuthorship W2958866730A5074855700 @default.
- W2958866730 hasAuthorship W2958866730A5085093513 @default.
- W2958866730 hasAuthorship W2958866730A5085729379 @default.
- W2958866730 hasConcept C112950240 @default.
- W2958866730 hasConcept C159985019 @default.
- W2958866730 hasConcept C167310744 @default.
- W2958866730 hasConcept C171250308 @default.
- W2958866730 hasConcept C182508753 @default.
- W2958866730 hasConcept C191897082 @default.
- W2958866730 hasConcept C192562407 @default.
- W2958866730 hasConcept C2777230088 @default.
- W2958866730 hasConcept C30080830 @default.
- W2958866730 hasConcept C43486711 @default.
- W2958866730 hasConcept C92880739 @default.
- W2958866730 hasConceptScore W2958866730C112950240 @default.
- W2958866730 hasConceptScore W2958866730C159985019 @default.
- W2958866730 hasConceptScore W2958866730C167310744 @default.