Matches in SemOpenAlex for { <https://semopenalex.org/work/W2958889713> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W2958889713 endingPage "2321" @default.
- W2958889713 startingPage "2314" @default.
- W2958889713 abstract "Background and Purpose— Discrimination of the stability of intracranial aneurysms is critical for determining the treatment strategy, especially in small aneurysms. This study aims to evaluate the feasibility of applying machine learning for predicting aneurysm stability with radiomics-derived morphological features. Methods— Morphological features of 719 aneurysms were extracted from PyRadiomics, of which 420 aneurysms with Maximum3DDiameter ranging from 4 mm to 8 mm were enrolled for analysis. The stability of these aneurysms and other clinical characteristics were reviewed from the medical records. Based on the morphologies with/without clinical features, machine learning models were constructed and compared to define the morphological determinants and screen the optimal model for predicting aneurysm stability. The effect of clinical characteristics on the morphology of unstable aneurysms was analyzed. Results— Twelve morphological features were automatically extracted from PyRadiomics implemented in Python for each aneurysm. Lasso regression defined Flatness as the most important morphological feature to predict aneurysm stability, followed by SphericalDisproportion, Maximum2DDiameterSlice, and SurfaceArea. SurfaceArea (odds ratio [OR], 0.697; 95% CI, 0.476–0.998), SphericalDisproportion (OR, 1.730; 95% CI, 1.143–2.658), Flatness (OR, 0.584; 95% CI, 0.374–0.894), Hyperlipemia (OR, 2.410; 95% CI, 1.029–5.721), Multiplicity (OR, 0.182; 95% CI, 0.082–0.380), Location at middle cerebral artery (OR, 0.359; 95% CI, 0.134–0.902), and internal carotid artery (OR, 0.087; 95% CI, 0.030–0.211) were enrolled into the final prediction model. In terms of performance, the area under curve of the model reached 0.853 (95% CI, 0.767–0.940). For unstable aneurysms, Compactness1 ( P =0.035), Compactness2 ( P =0.036), Sphericity ( P =0.035), and Flatness ( P =0.010) were low, whereas SphericalDisproportion ( P =0.034) was higher in patients with hypertension. Conclusions— Morphological features extracted from PyRadiomics can be used for aneurysm stratification. Flatness is the most important morphological determinant to predict aneurysm stability. Our model can be used to predict aneurysm stability. Unstable aneurysm is more irregular in patients with hypertension." @default.
- W2958889713 created "2019-07-23" @default.
- W2958889713 creator A5025010135 @default.
- W2958889713 creator A5026133037 @default.
- W2958889713 creator A5031644821 @default.
- W2958889713 creator A5056312535 @default.
- W2958889713 creator A5066070885 @default.
- W2958889713 creator A5081613593 @default.
- W2958889713 creator A5083417625 @default.
- W2958889713 date "2019-09-01" @default.
- W2958889713 modified "2023-10-15" @default.
- W2958889713 title "Prediction of Aneurysm Stability Using a Machine Learning Model Based on PyRadiomics-Derived Morphological Features" @default.
- W2958889713 cites W1915219863 @default.
- W2958889713 cites W1976795428 @default.
- W2958889713 cites W2011109245 @default.
- W2958889713 cites W2015984379 @default.
- W2958889713 cites W2022976912 @default.
- W2958889713 cites W2064079700 @default.
- W2958889713 cites W2109815030 @default.
- W2958889713 cites W2113713760 @default.
- W2958889713 cites W2148470305 @default.
- W2958889713 cites W2158147889 @default.
- W2958889713 cites W2164577650 @default.
- W2958889713 cites W2165621956 @default.
- W2958889713 cites W2168624388 @default.
- W2958889713 cites W2185602086 @default.
- W2958889713 cites W2336629714 @default.
- W2958889713 cites W2594834811 @default.
- W2958889713 cites W2624330037 @default.
- W2958889713 cites W2740593653 @default.
- W2958889713 cites W2746587344 @default.
- W2958889713 cites W2767128594 @default.
- W2958889713 cites W2770263541 @default.
- W2958889713 cites W2792248972 @default.
- W2958889713 cites W2805483630 @default.
- W2958889713 cites W2808663947 @default.
- W2958889713 cites W2885498281 @default.
- W2958889713 cites W2890539449 @default.
- W2958889713 doi "https://doi.org/10.1161/strokeaha.119.025777" @default.
- W2958889713 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31288671" @default.
- W2958889713 hasPublicationYear "2019" @default.
- W2958889713 type Work @default.
- W2958889713 sameAs 2958889713 @default.
- W2958889713 citedByCount "72" @default.
- W2958889713 countsByYear W29588897132020 @default.
- W2958889713 countsByYear W29588897132021 @default.
- W2958889713 countsByYear W29588897132022 @default.
- W2958889713 countsByYear W29588897132023 @default.
- W2958889713 crossrefType "journal-article" @default.
- W2958889713 hasAuthorship W2958889713A5025010135 @default.
- W2958889713 hasAuthorship W2958889713A5026133037 @default.
- W2958889713 hasAuthorship W2958889713A5031644821 @default.
- W2958889713 hasAuthorship W2958889713A5056312535 @default.
- W2958889713 hasAuthorship W2958889713A5066070885 @default.
- W2958889713 hasAuthorship W2958889713A5081613593 @default.
- W2958889713 hasAuthorship W2958889713A5083417625 @default.
- W2958889713 hasBestOaLocation W29588897131 @default.
- W2958889713 hasConcept C126322002 @default.
- W2958889713 hasConcept C126838900 @default.
- W2958889713 hasConcept C136764020 @default.
- W2958889713 hasConcept C154945302 @default.
- W2958889713 hasConcept C156957248 @default.
- W2958889713 hasConcept C170964787 @default.
- W2958889713 hasConcept C2776098176 @default.
- W2958889713 hasConcept C37616216 @default.
- W2958889713 hasConcept C41008148 @default.
- W2958889713 hasConcept C71924100 @default.
- W2958889713 hasConceptScore W2958889713C126322002 @default.
- W2958889713 hasConceptScore W2958889713C126838900 @default.
- W2958889713 hasConceptScore W2958889713C136764020 @default.
- W2958889713 hasConceptScore W2958889713C154945302 @default.
- W2958889713 hasConceptScore W2958889713C156957248 @default.
- W2958889713 hasConceptScore W2958889713C170964787 @default.
- W2958889713 hasConceptScore W2958889713C2776098176 @default.
- W2958889713 hasConceptScore W2958889713C37616216 @default.
- W2958889713 hasConceptScore W2958889713C41008148 @default.
- W2958889713 hasConceptScore W2958889713C71924100 @default.
- W2958889713 hasIssue "9" @default.
- W2958889713 hasLocation W29588897131 @default.
- W2958889713 hasLocation W29588897132 @default.
- W2958889713 hasOpenAccess W2958889713 @default.
- W2958889713 hasPrimaryLocation W29588897131 @default.
- W2958889713 hasRelatedWork W141524600 @default.
- W2958889713 hasRelatedWork W1841185769 @default.
- W2958889713 hasRelatedWork W1977663857 @default.
- W2958889713 hasRelatedWork W2058520121 @default.
- W2958889713 hasRelatedWork W2155887765 @default.
- W2958889713 hasRelatedWork W2203474965 @default.
- W2958889713 hasRelatedWork W2215792168 @default.
- W2958889713 hasRelatedWork W2958889713 @default.
- W2958889713 hasRelatedWork W2969155864 @default.
- W2958889713 hasRelatedWork W4284673498 @default.
- W2958889713 hasVolume "50" @default.
- W2958889713 isParatext "false" @default.
- W2958889713 isRetracted "false" @default.
- W2958889713 magId "2958889713" @default.
- W2958889713 workType "article" @default.