Matches in SemOpenAlex for { <https://semopenalex.org/work/W2959009212> ?p ?o ?g. }
- W2959009212 abstract "Genomic prediction with imputed whole-genome sequencing (WGS) data is an attractive approach to improve predictive ability with low cost. However, high accuracy has not been realized using this method in livestock. In this study, we imputed 435 individuals from 600K single nucleotide polymorphism (SNP) chip data to WGS data using different reference panels. We also investigated the prediction accuracy of genomic best linear unbiased prediction (GBLUP) using imputed WGS data from different reference panels, linkage disequilibrium (LD)-based marker pruning, and pre-selected variants based on Genome-wide association society (GWAS) results. Results showed that the imputation accuracies from 600K to WGS data were 0.873 ± 0.038, 0.906 ± 0.036, and 0.979 ± 0.010 for the internal, external, and combined reference panels, respectively. In most traits of chickens, the prediction accuracy of imputed WGS data obtained from the internal reference panel was greater than or equal to that of the combined reference panel; the external reference panel had the lowest prediction accuracy. Compared with 600K chip data, GBLUP with imputed WGS data had only a small increase (1-3%) in prediction accuracy. Using only variants selected from imputed WGS data based on GWAS results resulted in almost no increase for most traits and even increased the bias of the regression coefficient. The impact of the degree of LD of selected and remaining variants on prediction accuracy was different. For average daily gain (ADG), residual feed intake (RFI), intestine length (IL), and body weight in 91 days (BW91), the accuracy of GBLUP increased as the degree of LD of selected variants decreased, but the opposite relationship occurred for the remaining variants. But for breast muscle weight (BMW) and average daily feed intake (ADFI), the accuracy of GBLUP increased as the degree of LD of selected variants increased, and the degree of LD of remaining variants had a small effect on prediction accuracy. Overall, the optimal imputation strategy to obtain WGS data for genomic prediction should consider the relationship between selected individuals and target population individuals to avoid heterogeneity of imputation. LD-based marker pruning can be used to improve the accuracy of genomic prediction using imputed WGS data." @default.
- W2959009212 created "2019-07-23" @default.
- W2959009212 creator A5005244980 @default.
- W2959009212 creator A5011118405 @default.
- W2959009212 creator A5019132887 @default.
- W2959009212 creator A5028072443 @default.
- W2959009212 creator A5033736862 @default.
- W2959009212 creator A5049104481 @default.
- W2959009212 creator A5049341927 @default.
- W2959009212 creator A5077558876 @default.
- W2959009212 creator A5081717691 @default.
- W2959009212 creator A5082936781 @default.
- W2959009212 creator A5084644313 @default.
- W2959009212 date "2019-07-17" @default.
- W2959009212 modified "2023-10-18" @default.
- W2959009212 title "Strategies for Obtaining and Pruning Imputed Whole-Genome Sequence Data for Genomic Prediction" @default.
- W2959009212 cites W1600823074 @default.
- W2959009212 cites W1910409052 @default.
- W2959009212 cites W1928998639 @default.
- W2959009212 cites W1977950286 @default.
- W2959009212 cites W1994910261 @default.
- W2959009212 cites W2008014772 @default.
- W2959009212 cites W2011904222 @default.
- W2959009212 cites W2012378145 @default.
- W2959009212 cites W2033151532 @default.
- W2959009212 cites W2067715889 @default.
- W2959009212 cites W2076300862 @default.
- W2959009212 cites W2077668635 @default.
- W2959009212 cites W2100262918 @default.
- W2959009212 cites W2119372134 @default.
- W2959009212 cites W2133289541 @default.
- W2959009212 cites W2154670965 @default.
- W2959009212 cites W2161633633 @default.
- W2959009212 cites W2164545188 @default.
- W2959009212 cites W2169287419 @default.
- W2959009212 cites W2219269777 @default.
- W2959009212 cites W2230276206 @default.
- W2959009212 cites W2284771357 @default.
- W2959009212 cites W2299698246 @default.
- W2959009212 cites W2346854546 @default.
- W2959009212 cites W2439144268 @default.
- W2959009212 cites W2491736610 @default.
- W2959009212 cites W2557913812 @default.
- W2959009212 cites W2570642086 @default.
- W2959009212 cites W2573520757 @default.
- W2959009212 cites W2592004722 @default.
- W2959009212 cites W2605706957 @default.
- W2959009212 cites W2769886042 @default.
- W2959009212 cites W2785831000 @default.
- W2959009212 cites W2792419865 @default.
- W2959009212 cites W2799737267 @default.
- W2959009212 cites W2895883457 @default.
- W2959009212 cites W2898863659 @default.
- W2959009212 cites W2901957554 @default.
- W2959009212 doi "https://doi.org/10.3389/fgene.2019.00673" @default.
- W2959009212 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6650575" @default.
- W2959009212 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31379929" @default.
- W2959009212 hasPublicationYear "2019" @default.
- W2959009212 type Work @default.
- W2959009212 sameAs 2959009212 @default.
- W2959009212 citedByCount "17" @default.
- W2959009212 countsByYear W29590092122020 @default.
- W2959009212 countsByYear W29590092122021 @default.
- W2959009212 countsByYear W29590092122022 @default.
- W2959009212 countsByYear W29590092122023 @default.
- W2959009212 crossrefType "journal-article" @default.
- W2959009212 hasAuthorship W2959009212A5005244980 @default.
- W2959009212 hasAuthorship W2959009212A5011118405 @default.
- W2959009212 hasAuthorship W2959009212A5019132887 @default.
- W2959009212 hasAuthorship W2959009212A5028072443 @default.
- W2959009212 hasAuthorship W2959009212A5033736862 @default.
- W2959009212 hasAuthorship W2959009212A5049104481 @default.
- W2959009212 hasAuthorship W2959009212A5049341927 @default.
- W2959009212 hasAuthorship W2959009212A5077558876 @default.
- W2959009212 hasAuthorship W2959009212A5081717691 @default.
- W2959009212 hasAuthorship W2959009212A5082936781 @default.
- W2959009212 hasAuthorship W2959009212A5084644313 @default.
- W2959009212 hasBestOaLocation W29590092121 @default.
- W2959009212 hasConcept C103545067 @default.
- W2959009212 hasConcept C104317684 @default.
- W2959009212 hasConcept C105795698 @default.
- W2959009212 hasConcept C106208931 @default.
- W2959009212 hasConcept C124101348 @default.
- W2959009212 hasConcept C135763542 @default.
- W2959009212 hasConcept C141231307 @default.
- W2959009212 hasConcept C153209595 @default.
- W2959009212 hasConcept C154945302 @default.
- W2959009212 hasConcept C192953774 @default.
- W2959009212 hasConcept C24432333 @default.
- W2959009212 hasConcept C2992444039 @default.
- W2959009212 hasConcept C33923547 @default.
- W2959009212 hasConcept C35605836 @default.
- W2959009212 hasConcept C41008148 @default.
- W2959009212 hasConcept C54355233 @default.
- W2959009212 hasConcept C58041806 @default.
- W2959009212 hasConcept C70721500 @default.
- W2959009212 hasConcept C81917197 @default.
- W2959009212 hasConcept C86803240 @default.
- W2959009212 hasConcept C9357733 @default.
- W2959009212 hasConceptScore W2959009212C103545067 @default.