Matches in SemOpenAlex for { <https://semopenalex.org/work/W2959078919> ?p ?o ?g. }
- W2959078919 endingPage "108" @default.
- W2959078919 startingPage "94" @default.
- W2959078919 abstract "Imbalanced data, in which the data exhibit an unequal or highly-skewed distribution between its classes/categories, are pervasive in many scientific fields, with application range from bioinformatics, text classification, face recognition, fraud detection, etc. Imbalanced data in modern science are often of massive size and high dimensionality, for example, gene expression data for diagnosing rare diseases. To address this issue, a fused screening procedure is proposed for dimension reduction with large-scale high dimensional imbalanced data under repeated case-control samplings. There are several advantages of the proposed method: it is model-free without any model specification for the underlying distribution; it is relatively inexpensive in computational cost by using the subsampling technique; it is robust to outliers in the predictors. The theoretical properties are established under regularity conditions. Numerical studies including extensive simulations and a real data example confirm that the proposed method performs well in practical settings." @default.
- W2959078919 created "2019-07-23" @default.
- W2959078919 creator A5018724340 @default.
- W2959078919 creator A5034899252 @default.
- W2959078919 creator A5057519041 @default.
- W2959078919 creator A5063413884 @default.
- W2959078919 date "2020-01-01" @default.
- W2959078919 modified "2023-10-17" @default.
- W2959078919 title "Fused variable screening for massive imbalanced data" @default.
- W2959078919 cites W1503408699 @default.
- W2959078919 cites W1547093648 @default.
- W2959078919 cites W1910317596 @default.
- W2959078919 cites W1995668352 @default.
- W2959078919 cites W1996984828 @default.
- W2959078919 cites W2002414568 @default.
- W2959078919 cites W2012309718 @default.
- W2959078919 cites W2016119924 @default.
- W2959078919 cites W2018144913 @default.
- W2959078919 cites W2020695240 @default.
- W2959078919 cites W2020925091 @default.
- W2959078919 cites W2024689521 @default.
- W2959078919 cites W2029947124 @default.
- W2959078919 cites W2033287761 @default.
- W2959078919 cites W2056938357 @default.
- W2959078919 cites W2057742514 @default.
- W2959078919 cites W2058272903 @default.
- W2959078919 cites W2060170493 @default.
- W2959078919 cites W2074682976 @default.
- W2959078919 cites W2093019316 @default.
- W2959078919 cites W2093218468 @default.
- W2959078919 cites W2106479238 @default.
- W2959078919 cites W2107639732 @default.
- W2959078919 cites W2107784689 @default.
- W2959078919 cites W2118978333 @default.
- W2959078919 cites W2126288721 @default.
- W2959078919 cites W2129014109 @default.
- W2959078919 cites W2136659330 @default.
- W2959078919 cites W2138019504 @default.
- W2959078919 cites W2143894320 @default.
- W2959078919 cites W2148143831 @default.
- W2959078919 cites W2154560360 @default.
- W2959078919 cites W2158698691 @default.
- W2959078919 cites W2164092415 @default.
- W2959078919 cites W2169452567 @default.
- W2959078919 cites W2190439575 @default.
- W2959078919 cites W2308962484 @default.
- W2959078919 cites W2313719134 @default.
- W2959078919 cites W2441359628 @default.
- W2959078919 cites W2515750612 @default.
- W2959078919 cites W2555531561 @default.
- W2959078919 cites W2614439782 @default.
- W2959078919 cites W2618601771 @default.
- W2959078919 cites W2772095510 @default.
- W2959078919 cites W2921286874 @default.
- W2959078919 cites W3098488568 @default.
- W2959078919 cites W3104361694 @default.
- W2959078919 doi "https://doi.org/10.1016/j.csda.2019.06.013" @default.
- W2959078919 hasPublicationYear "2020" @default.
- W2959078919 type Work @default.
- W2959078919 sameAs 2959078919 @default.
- W2959078919 citedByCount "7" @default.
- W2959078919 countsByYear W29590789192020 @default.
- W2959078919 countsByYear W29590789192021 @default.
- W2959078919 countsByYear W29590789192022 @default.
- W2959078919 countsByYear W29590789192023 @default.
- W2959078919 crossrefType "journal-article" @default.
- W2959078919 hasAuthorship W2959078919A5018724340 @default.
- W2959078919 hasAuthorship W2959078919A5034899252 @default.
- W2959078919 hasAuthorship W2959078919A5057519041 @default.
- W2959078919 hasAuthorship W2959078919A5063413884 @default.
- W2959078919 hasConcept C111030470 @default.
- W2959078919 hasConcept C119857082 @default.
- W2959078919 hasConcept C124101348 @default.
- W2959078919 hasConcept C134306372 @default.
- W2959078919 hasConcept C153180895 @default.
- W2959078919 hasConcept C154945302 @default.
- W2959078919 hasConcept C159985019 @default.
- W2959078919 hasConcept C182365436 @default.
- W2959078919 hasConcept C184509293 @default.
- W2959078919 hasConcept C192562407 @default.
- W2959078919 hasConcept C202444582 @default.
- W2959078919 hasConcept C204323151 @default.
- W2959078919 hasConcept C33676613 @default.
- W2959078919 hasConcept C33923547 @default.
- W2959078919 hasConcept C41008148 @default.
- W2959078919 hasConcept C70518039 @default.
- W2959078919 hasConcept C73555534 @default.
- W2959078919 hasConcept C79337645 @default.
- W2959078919 hasConceptScore W2959078919C111030470 @default.
- W2959078919 hasConceptScore W2959078919C119857082 @default.
- W2959078919 hasConceptScore W2959078919C124101348 @default.
- W2959078919 hasConceptScore W2959078919C134306372 @default.
- W2959078919 hasConceptScore W2959078919C153180895 @default.
- W2959078919 hasConceptScore W2959078919C154945302 @default.
- W2959078919 hasConceptScore W2959078919C159985019 @default.
- W2959078919 hasConceptScore W2959078919C182365436 @default.
- W2959078919 hasConceptScore W2959078919C184509293 @default.
- W2959078919 hasConceptScore W2959078919C192562407 @default.