Matches in SemOpenAlex for { <https://semopenalex.org/work/W2959098107> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W2959098107 abstract "Digital evidence is a fundamental element in cyber-forensics and judicial processes. However, the work of forensic examiners is becoming more challenging as the volume digital content and files increases. In this paper, we use machine learning especially deep learning to detect stealthy watermarks in various types of files. We use a black box approach which is different from current steganographic and cryptographic methods to find patterns of candidate file locations for hidden data We studied Deep Neural Networks (DNN) to predict stealthy watermarks in files using the deep learning implementation (DL4J) and Multilayer Perceptron (MLP) algorithms as implemented in Weka. We evaluated MLP models by altering the number of neurons and hidden layers while the DL4J models were evaluated by varying the number of dense layers and nodes. For the MLP models, DOCX & PPTX singleton models predicted stealthy watermarks in files with predictive accuracies ranging from 47.5% to 100%; JPEG singleton models registered predictive accuracies ranging from 35% to 65%. Comparatively, HYBRID3 models had predictive accuracies ranging from 42.5% to 95% while HYBRID_OOXML had predictive accuracies of 47.5% to 100%. However, JPEG_DOCX had predictive accuracies 47.5% to 97.5% while JPEG_PPTX had predictive accuracies of 40% to 85%. Furthermore for DL4J models, we only generated HYBRID3 models, which predicted stealthy watermarks in DOCX files with predictive accuracies 100%. The HYBRID3 DL4J model predicted stealthy watermarks in PPTX with predictive accuracies ranging from 55% to 82 % while in JPEG, the predictive accuracies from 50% to 52.5%. The major finding with deep learning also revealed improvements in prediction of stealthy watermarks in PPTX files using DL4J models." @default.
- W2959098107 created "2019-07-23" @default.
- W2959098107 creator A5013881064 @default.
- W2959098107 creator A5023335669 @default.
- W2959098107 creator A5027503804 @default.
- W2959098107 creator A5074868524 @default.
- W2959098107 date "2019-06-01" @default.
- W2959098107 modified "2023-09-27" @default.
- W2959098107 title "Predicting Stealthy Watermarks in Files Using Deep Learning" @default.
- W2959098107 cites W2028642251 @default.
- W2959098107 cites W2076342816 @default.
- W2959098107 cites W2133990480 @default.
- W2959098107 cites W2412509443 @default.
- W2959098107 cites W2444185264 @default.
- W2959098107 cites W2579318729 @default.
- W2959098107 cites W2771036112 @default.
- W2959098107 cites W2805747897 @default.
- W2959098107 cites W2937081530 @default.
- W2959098107 cites W1503100773 @default.
- W2959098107 doi "https://doi.org/10.1109/isdfs.2019.8757538" @default.
- W2959098107 hasPublicationYear "2019" @default.
- W2959098107 type Work @default.
- W2959098107 sameAs 2959098107 @default.
- W2959098107 citedByCount "0" @default.
- W2959098107 crossrefType "proceedings-article" @default.
- W2959098107 hasAuthorship W2959098107A5013881064 @default.
- W2959098107 hasAuthorship W2959098107A5023335669 @default.
- W2959098107 hasAuthorship W2959098107A5027503804 @default.
- W2959098107 hasAuthorship W2959098107A5074868524 @default.
- W2959098107 hasConcept C108583219 @default.
- W2959098107 hasConcept C115051666 @default.
- W2959098107 hasConcept C119857082 @default.
- W2959098107 hasConcept C121332964 @default.
- W2959098107 hasConcept C153180895 @default.
- W2959098107 hasConcept C154945302 @default.
- W2959098107 hasConcept C166957645 @default.
- W2959098107 hasConcept C20556612 @default.
- W2959098107 hasConcept C2777548347 @default.
- W2959098107 hasConcept C41008148 @default.
- W2959098107 hasConcept C50644808 @default.
- W2959098107 hasConcept C60908668 @default.
- W2959098107 hasConcept C62520636 @default.
- W2959098107 hasConcept C76155785 @default.
- W2959098107 hasConcept C95457728 @default.
- W2959098107 hasConceptScore W2959098107C108583219 @default.
- W2959098107 hasConceptScore W2959098107C115051666 @default.
- W2959098107 hasConceptScore W2959098107C119857082 @default.
- W2959098107 hasConceptScore W2959098107C121332964 @default.
- W2959098107 hasConceptScore W2959098107C153180895 @default.
- W2959098107 hasConceptScore W2959098107C154945302 @default.
- W2959098107 hasConceptScore W2959098107C166957645 @default.
- W2959098107 hasConceptScore W2959098107C20556612 @default.
- W2959098107 hasConceptScore W2959098107C2777548347 @default.
- W2959098107 hasConceptScore W2959098107C41008148 @default.
- W2959098107 hasConceptScore W2959098107C50644808 @default.
- W2959098107 hasConceptScore W2959098107C60908668 @default.
- W2959098107 hasConceptScore W2959098107C62520636 @default.
- W2959098107 hasConceptScore W2959098107C76155785 @default.
- W2959098107 hasConceptScore W2959098107C95457728 @default.
- W2959098107 hasLocation W29590981071 @default.
- W2959098107 hasOpenAccess W2959098107 @default.
- W2959098107 hasPrimaryLocation W29590981071 @default.
- W2959098107 hasRelatedWork W1028480143 @default.
- W2959098107 hasRelatedWork W2735298006 @default.
- W2959098107 hasRelatedWork W2944488608 @default.
- W2959098107 hasRelatedWork W2946388876 @default.
- W2959098107 hasRelatedWork W2992977538 @default.
- W2959098107 hasRelatedWork W3024267056 @default.
- W2959098107 hasRelatedWork W3111920840 @default.
- W2959098107 hasRelatedWork W3156366810 @default.
- W2959098107 hasRelatedWork W3162758827 @default.
- W2959098107 hasRelatedWork W3185997370 @default.
- W2959098107 hasRelatedWork W3198231732 @default.
- W2959098107 isParatext "false" @default.
- W2959098107 isRetracted "false" @default.
- W2959098107 magId "2959098107" @default.
- W2959098107 workType "article" @default.