Matches in SemOpenAlex for { <https://semopenalex.org/work/W2959183777> ?p ?o ?g. }
- W2959183777 endingPage "99076" @default.
- W2959183777 startingPage "99065" @default.
- W2959183777 abstract "Deep convolutional networks have demonstrated state-of-the-art performance on various challenging medical image processing tasks. Leveraging images from different modalities for the same analysis task holds large clinical benefits. However, the generalization capability of deep networks on test data sampled from different distribution remains as a major challenge. In this paper, we propose a plug-and-play adversarial domain adaptation network (PnP-AdaNet) for adapting segmentation networks between different modalities of medical images, e.g., MRI and CT. We tackle the significant domain shift by aligning the feature spaces of source and target domains at multiple scales in an unsupervised manner. With the adversarial loss, we learn a domain adaptation module which flexibly replaces the early encoder layers of the source network, and the higher layers are shared between two domains. We validate our domain adaptation method on cardiac segmentation in unpaired MRI and CT, with four different anatomical structures. The average Dice achieved 63.9%, which is a significant recover from the complete failure (Dice score of 13.2%) if we directly test an MRI segmentation network on CT data. In addition, our proposed <italic xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>PnP-AdaNet</i> outperforms many state-of-the-art unsupervised domain adaptation approaches on the same dataset. The experimental results with comprehensive ablation studies have demonstrated the excellent efficacy of our proposed method for unsupervised cross-modality domain adaptation. Our code is publically available at <uri xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>https://github.com/carrenD/Medical-Cross-Modality-Domain-Adaptation</uri>" @default.
- W2959183777 created "2019-07-23" @default.
- W2959183777 creator A5007222325 @default.
- W2959183777 creator A5011662977 @default.
- W2959183777 creator A5022499603 @default.
- W2959183777 creator A5032708386 @default.
- W2959183777 creator A5064548129 @default.
- W2959183777 creator A5089189158 @default.
- W2959183777 creator A5090516040 @default.
- W2959183777 date "2019-01-01" @default.
- W2959183777 modified "2023-10-16" @default.
- W2959183777 title "PnP-AdaNet: Plug-and-Play Adversarial Domain Adaptation Network at Unpaired Cross-Modality Cardiac Segmentation" @default.
- W2959183777 cites W1589326101 @default.
- W2959183777 cites W2031342017 @default.
- W2959183777 cites W2082718270 @default.
- W2959183777 cites W2291593693 @default.
- W2959183777 cites W2343172899 @default.
- W2959183777 cites W2562469482 @default.
- W2959183777 cites W2581082771 @default.
- W2959183777 cites W2593768305 @default.
- W2959183777 cites W2613041730 @default.
- W2959183777 cites W2617128058 @default.
- W2959183777 cites W2741891296 @default.
- W2959183777 cites W2751812122 @default.
- W2959183777 cites W2772723798 @default.
- W2959183777 cites W2772926238 @default.
- W2959183777 cites W2798892366 @default.
- W2959183777 cites W2802798675 @default.
- W2959183777 cites W2803620993 @default.
- W2959183777 cites W2886281300 @default.
- W2959183777 cites W2890435066 @default.
- W2959183777 cites W2890761445 @default.
- W2959183777 cites W2891106726 @default.
- W2959183777 cites W2891179298 @default.
- W2959183777 cites W2949477454 @default.
- W2959183777 cites W2962784654 @default.
- W2959183777 cites W2962793481 @default.
- W2959183777 cites W2962825119 @default.
- W2959183777 cites W2962837118 @default.
- W2959183777 cites W2962850830 @default.
- W2959183777 cites W2962914239 @default.
- W2959183777 cites W2963182609 @default.
- W2959183777 cites W2963869863 @default.
- W2959183777 cites W2964090697 @default.
- W2959183777 cites W2964288524 @default.
- W2959183777 cites W317170363 @default.
- W2959183777 doi "https://doi.org/10.1109/access.2019.2929258" @default.
- W2959183777 hasPublicationYear "2019" @default.
- W2959183777 type Work @default.
- W2959183777 sameAs 2959183777 @default.
- W2959183777 citedByCount "122" @default.
- W2959183777 countsByYear W29591837772019 @default.
- W2959183777 countsByYear W29591837772020 @default.
- W2959183777 countsByYear W29591837772021 @default.
- W2959183777 countsByYear W29591837772022 @default.
- W2959183777 countsByYear W29591837772023 @default.
- W2959183777 crossrefType "journal-article" @default.
- W2959183777 hasAuthorship W2959183777A5007222325 @default.
- W2959183777 hasAuthorship W2959183777A5011662977 @default.
- W2959183777 hasAuthorship W2959183777A5022499603 @default.
- W2959183777 hasAuthorship W2959183777A5032708386 @default.
- W2959183777 hasAuthorship W2959183777A5064548129 @default.
- W2959183777 hasAuthorship W2959183777A5089189158 @default.
- W2959183777 hasAuthorship W2959183777A5090516040 @default.
- W2959183777 hasBestOaLocation W29591837771 @default.
- W2959183777 hasConcept C108583219 @default.
- W2959183777 hasConcept C111919701 @default.
- W2959183777 hasConcept C118505674 @default.
- W2959183777 hasConcept C120665830 @default.
- W2959183777 hasConcept C121332964 @default.
- W2959183777 hasConcept C134306372 @default.
- W2959183777 hasConcept C138885662 @default.
- W2959183777 hasConcept C139807058 @default.
- W2959183777 hasConcept C153180895 @default.
- W2959183777 hasConcept C154945302 @default.
- W2959183777 hasConcept C2776401178 @default.
- W2959183777 hasConcept C2780226545 @default.
- W2959183777 hasConcept C33923547 @default.
- W2959183777 hasConcept C36503486 @default.
- W2959183777 hasConcept C41008148 @default.
- W2959183777 hasConcept C41895202 @default.
- W2959183777 hasConcept C89600930 @default.
- W2959183777 hasConceptScore W2959183777C108583219 @default.
- W2959183777 hasConceptScore W2959183777C111919701 @default.
- W2959183777 hasConceptScore W2959183777C118505674 @default.
- W2959183777 hasConceptScore W2959183777C120665830 @default.
- W2959183777 hasConceptScore W2959183777C121332964 @default.
- W2959183777 hasConceptScore W2959183777C134306372 @default.
- W2959183777 hasConceptScore W2959183777C138885662 @default.
- W2959183777 hasConceptScore W2959183777C139807058 @default.
- W2959183777 hasConceptScore W2959183777C153180895 @default.
- W2959183777 hasConceptScore W2959183777C154945302 @default.
- W2959183777 hasConceptScore W2959183777C2776401178 @default.
- W2959183777 hasConceptScore W2959183777C2780226545 @default.
- W2959183777 hasConceptScore W2959183777C33923547 @default.
- W2959183777 hasConceptScore W2959183777C36503486 @default.
- W2959183777 hasConceptScore W2959183777C41008148 @default.
- W2959183777 hasConceptScore W2959183777C41895202 @default.