Matches in SemOpenAlex for { <https://semopenalex.org/work/W2959302608> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W2959302608 abstract "State-of-the-art deep convolution neural networks (CNN) can be applied to various domains, including the grading of cancers in histopathology images, and are most promising approaches. However, it is well-known that CNNs require huge amounts of tagged images and resources to train and work well, and some prior works on cancer grading also achieved top accuracy by analyzing how cancer affects structures, such as cells, in terms of variability of characteristics. The aim of this work is to compare CNN-based classification of medical images with automated analysis of multiple structures. This is done experimentally, by implementing the alternatives and comparing classification accuracy on a public cancer grading dataset. The results show that a well-designed automated analysis of structures improved accuracy by 4% when compared with the best CNN result, showing that it is worth to study further and establish procedures based on that analysis." @default.
- W2959302608 created "2019-07-23" @default.
- W2959302608 creator A5049382757 @default.
- W2959302608 date "2019-05-29" @default.
- W2959302608 modified "2023-09-26" @default.
- W2959302608 title "Comparing Deep Learners with Variability Grading for Cancer Detection on Limited Histopathology Dataset" @default.
- W2959302608 cites W2070394694 @default.
- W2959302608 cites W2084705412 @default.
- W2959302608 cites W2094056275 @default.
- W2959302608 cites W2160633263 @default.
- W2959302608 cites W2183341477 @default.
- W2959302608 cites W2194775991 @default.
- W2959302608 cites W2344480160 @default.
- W2959302608 cites W2785343799 @default.
- W2959302608 cites W2889089723 @default.
- W2959302608 cites W2920983249 @default.
- W2959302608 doi "https://doi.org/10.1145/3340074.3340083" @default.
- W2959302608 hasPublicationYear "2019" @default.
- W2959302608 type Work @default.
- W2959302608 sameAs 2959302608 @default.
- W2959302608 citedByCount "0" @default.
- W2959302608 crossrefType "proceedings-article" @default.
- W2959302608 hasAuthorship W2959302608A5049382757 @default.
- W2959302608 hasBestOaLocation W29593026081 @default.
- W2959302608 hasConcept C121608353 @default.
- W2959302608 hasConcept C126322002 @default.
- W2959302608 hasConcept C127413603 @default.
- W2959302608 hasConcept C142724271 @default.
- W2959302608 hasConcept C147176958 @default.
- W2959302608 hasConcept C154945302 @default.
- W2959302608 hasConcept C204321447 @default.
- W2959302608 hasConcept C2777286243 @default.
- W2959302608 hasConcept C2985322473 @default.
- W2959302608 hasConcept C41008148 @default.
- W2959302608 hasConcept C544855455 @default.
- W2959302608 hasConcept C71924100 @default.
- W2959302608 hasConceptScore W2959302608C121608353 @default.
- W2959302608 hasConceptScore W2959302608C126322002 @default.
- W2959302608 hasConceptScore W2959302608C127413603 @default.
- W2959302608 hasConceptScore W2959302608C142724271 @default.
- W2959302608 hasConceptScore W2959302608C147176958 @default.
- W2959302608 hasConceptScore W2959302608C154945302 @default.
- W2959302608 hasConceptScore W2959302608C204321447 @default.
- W2959302608 hasConceptScore W2959302608C2777286243 @default.
- W2959302608 hasConceptScore W2959302608C2985322473 @default.
- W2959302608 hasConceptScore W2959302608C41008148 @default.
- W2959302608 hasConceptScore W2959302608C544855455 @default.
- W2959302608 hasConceptScore W2959302608C71924100 @default.
- W2959302608 hasLocation W29593026081 @default.
- W2959302608 hasOpenAccess W2959302608 @default.
- W2959302608 hasPrimaryLocation W29593026081 @default.
- W2959302608 hasRelatedWork W1552159754 @default.
- W2959302608 hasRelatedWork W2131420137 @default.
- W2959302608 hasRelatedWork W2148757832 @default.
- W2959302608 hasRelatedWork W2293457016 @default.
- W2959302608 hasRelatedWork W2338163090 @default.
- W2959302608 hasRelatedWork W2368651715 @default.
- W2959302608 hasRelatedWork W2611614995 @default.
- W2959302608 hasRelatedWork W2789919619 @default.
- W2959302608 hasRelatedWork W3107474891 @default.
- W2959302608 hasRelatedWork W39297036 @default.
- W2959302608 isParatext "false" @default.
- W2959302608 isRetracted "false" @default.
- W2959302608 magId "2959302608" @default.
- W2959302608 workType "article" @default.