Matches in SemOpenAlex for { <https://semopenalex.org/work/W2959331246> ?p ?o ?g. }
- W2959331246 endingPage "i323" @default.
- W2959331246 startingPage "i315" @default.
- W2959331246 abstract "Abstract Motivation Peptidic natural products (PNPs) are considered a promising compound class that has many applications in medicine. Recently developed mass spectrometry-based pipelines are transforming PNP discovery into a high-throughput technology. However, the current computational methods for PNP identification via database search of mass spectra are still in their infancy and could be substantially improved. Results Here we present NPS, a statistical learning-based approach for scoring PNP–spectrum matches. We incorporated NPS into two leading PNP discovery tools and benchmarked them on millions of natural product mass spectra. The results demonstrate more than 45% increase in the number of identified spectra and 20% more found PNPs at a false discovery rate of 1%. Availability and implementation NPS is available as a command line tool and as a web application at http://cab.spbu.ru/software/NPS. Supplementary information Supplementary data are available at Bioinformatics online." @default.
- W2959331246 created "2019-07-23" @default.
- W2959331246 creator A5030895995 @default.
- W2959331246 creator A5044824498 @default.
- W2959331246 creator A5060107728 @default.
- W2959331246 date "2019-07-01" @default.
- W2959331246 modified "2023-09-23" @default.
- W2959331246 title "NPS: scoring and evaluating the statistical significance of peptidic natural product–spectrum matches" @default.
- W2959331246 cites W1488520384 @default.
- W2959331246 cites W1932285937 @default.
- W2959331246 cites W1966450437 @default.
- W2959331246 cites W1967408138 @default.
- W2959331246 cites W1973495005 @default.
- W2959331246 cites W1995693931 @default.
- W2959331246 cites W2012251902 @default.
- W2959331246 cites W2013455629 @default.
- W2959331246 cites W2018990299 @default.
- W2959331246 cites W2022960083 @default.
- W2959331246 cites W2026465178 @default.
- W2959331246 cites W2028673251 @default.
- W2959331246 cites W2038615001 @default.
- W2959331246 cites W2043472907 @default.
- W2959331246 cites W2043828494 @default.
- W2959331246 cites W2053284144 @default.
- W2959331246 cites W2056499061 @default.
- W2959331246 cites W2075036506 @default.
- W2959331246 cites W2078040374 @default.
- W2959331246 cites W2085393537 @default.
- W2959331246 cites W2096057003 @default.
- W2959331246 cites W2099314206 @default.
- W2959331246 cites W2107903949 @default.
- W2959331246 cites W2109948527 @default.
- W2959331246 cites W2125069590 @default.
- W2959331246 cites W2130706354 @default.
- W2959331246 cites W2150827955 @default.
- W2959331246 cites W2162854463 @default.
- W2959331246 cites W2179948434 @default.
- W2959331246 cites W2187341651 @default.
- W2959331246 cites W2317928565 @default.
- W2959331246 cites W2322958071 @default.
- W2959331246 cites W2326892360 @default.
- W2959331246 cites W2332821092 @default.
- W2959331246 cites W2473139211 @default.
- W2959331246 cites W2504691963 @default.
- W2959331246 cites W2543967261 @default.
- W2959331246 cites W2546443756 @default.
- W2959331246 cites W2770501663 @default.
- W2959331246 cites W2793924581 @default.
- W2959331246 cites W4230932396 @default.
- W2959331246 doi "https://doi.org/10.1093/bioinformatics/btz374" @default.
- W2959331246 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6612854" @default.
- W2959331246 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31510666" @default.
- W2959331246 hasPublicationYear "2019" @default.
- W2959331246 type Work @default.
- W2959331246 sameAs 2959331246 @default.
- W2959331246 citedByCount "5" @default.
- W2959331246 countsByYear W29593312462020 @default.
- W2959331246 countsByYear W29593312462021 @default.
- W2959331246 countsByYear W29593312462022 @default.
- W2959331246 crossrefType "journal-article" @default.
- W2959331246 hasAuthorship W2959331246A5030895995 @default.
- W2959331246 hasAuthorship W2959331246A5044824498 @default.
- W2959331246 hasAuthorship W2959331246A5060107728 @default.
- W2959331246 hasBestOaLocation W29593312461 @default.
- W2959331246 hasConcept C104317684 @default.
- W2959331246 hasConcept C116834253 @default.
- W2959331246 hasConcept C124101348 @default.
- W2959331246 hasConcept C162356407 @default.
- W2959331246 hasConcept C185592680 @default.
- W2959331246 hasConcept C193244246 @default.
- W2959331246 hasConcept C199360897 @default.
- W2959331246 hasConcept C2524010 @default.
- W2959331246 hasConcept C2777904410 @default.
- W2959331246 hasConcept C2779396153 @default.
- W2959331246 hasConcept C33923547 @default.
- W2959331246 hasConcept C40325409 @default.
- W2959331246 hasConcept C41008148 @default.
- W2959331246 hasConcept C43617362 @default.
- W2959331246 hasConcept C55493867 @default.
- W2959331246 hasConcept C59822182 @default.
- W2959331246 hasConcept C71240020 @default.
- W2959331246 hasConcept C86803240 @default.
- W2959331246 hasConcept C90673727 @default.
- W2959331246 hasConceptScore W2959331246C104317684 @default.
- W2959331246 hasConceptScore W2959331246C116834253 @default.
- W2959331246 hasConceptScore W2959331246C124101348 @default.
- W2959331246 hasConceptScore W2959331246C162356407 @default.
- W2959331246 hasConceptScore W2959331246C185592680 @default.
- W2959331246 hasConceptScore W2959331246C193244246 @default.
- W2959331246 hasConceptScore W2959331246C199360897 @default.
- W2959331246 hasConceptScore W2959331246C2524010 @default.
- W2959331246 hasConceptScore W2959331246C2777904410 @default.
- W2959331246 hasConceptScore W2959331246C2779396153 @default.
- W2959331246 hasConceptScore W2959331246C33923547 @default.
- W2959331246 hasConceptScore W2959331246C40325409 @default.
- W2959331246 hasConceptScore W2959331246C41008148 @default.
- W2959331246 hasConceptScore W2959331246C43617362 @default.
- W2959331246 hasConceptScore W2959331246C55493867 @default.