Matches in SemOpenAlex for { <https://semopenalex.org/work/W2959341277> ?p ?o ?g. }
- W2959341277 endingPage "e028375" @default.
- W2959341277 startingPage "e028375" @default.
- W2959341277 abstract "Introduction Asthma is a long-term condition with rapid onset worsening of symptoms (‘attacks’) which can be unpredictable and may prove fatal. Models predicting asthma attacks require high sensitivity to minimise mortality risk, and high specificity to avoid unnecessary prescribing of preventative medications that carry an associated risk of adverse events. We aim to create a risk score to predict asthma attacks in primary care using a statistical learning approach trained on routinely collected electronic health record data. Methods and analysis We will employ machine-learning classifiers (naïve Bayes, support vector machines, and random forests) to create an asthma attack risk prediction model, using the Asthma Learning Health System (ALHS) study patient registry comprising 500 000 individuals across 75 Scottish general practices, with linked longitudinal primary care prescribing records, primary care Read codes, accident and emergency records, hospital admissions and deaths. Models will be compared on a partition of the dataset reserved for validation, and the final model will be tested in both an unseen partition of the derivation dataset and an external dataset from the Seasonal Influenza Vaccination Effectiveness II (SIVE II) study. Ethics and dissemination Permissions for the ALHS project were obtained from the South East Scotland Research Ethics Committee 02 [16/SS/0130] and the Public Benefit and Privacy Panel for Health and Social Care (1516–0489). Permissions for the SIVE II project were obtained from the Privacy Advisory Committee (National Services NHS Scotland) [68/14] and the National Research Ethics Committee West Midlands–Edgbaston [15/WM/0035]. The subsequent research paper will be submitted for publication to a peer-reviewed journal and code scripts used for all components of the data cleaning, compiling, and analysis will be made available in the open source GitHub website ( https://github.com/hollytibble )." @default.
- W2959341277 created "2019-07-23" @default.
- W2959341277 creator A5005426752 @default.
- W2959341277 creator A5019321925 @default.
- W2959341277 creator A5025495401 @default.
- W2959341277 creator A5026215303 @default.
- W2959341277 creator A5031640821 @default.
- W2959341277 creator A5067470371 @default.
- W2959341277 creator A5076281912 @default.
- W2959341277 date "2019-07-01" @default.
- W2959341277 modified "2023-10-18" @default.
- W2959341277 title "Predicting asthma attacks in primary care: protocol for developing a machine learning-based prediction model" @default.
- W2959341277 cites W144386269 @default.
- W2959341277 cites W1577451703 @default.
- W2959341277 cites W1866803133 @default.
- W2959341277 cites W1903161601 @default.
- W2959341277 cites W1966647482 @default.
- W2959341277 cites W1988096894 @default.
- W2959341277 cites W1988331148 @default.
- W2959341277 cites W1992076610 @default.
- W2959341277 cites W1997116821 @default.
- W2959341277 cites W2000445173 @default.
- W2959341277 cites W2006465967 @default.
- W2959341277 cites W2010560080 @default.
- W2959341277 cites W2012575623 @default.
- W2959341277 cites W2015014078 @default.
- W2959341277 cites W2019694480 @default.
- W2959341277 cites W2019998349 @default.
- W2959341277 cites W2020648111 @default.
- W2959341277 cites W2033830300 @default.
- W2959341277 cites W2046696995 @default.
- W2959341277 cites W2048630328 @default.
- W2959341277 cites W2052225595 @default.
- W2959341277 cites W2059676477 @default.
- W2959341277 cites W2078078890 @default.
- W2959341277 cites W2079452627 @default.
- W2959341277 cites W2084387088 @default.
- W2959341277 cites W2085457417 @default.
- W2959341277 cites W2085902327 @default.
- W2959341277 cites W2090798227 @default.
- W2959341277 cites W2092479661 @default.
- W2959341277 cites W2097900222 @default.
- W2959341277 cites W2104718344 @default.
- W2959341277 cites W2107702660 @default.
- W2959341277 cites W2108928272 @default.
- W2959341277 cites W2115110581 @default.
- W2959341277 cites W2118978333 @default.
- W2959341277 cites W2124800798 @default.
- W2959341277 cites W2128500476 @default.
- W2959341277 cites W2129168200 @default.
- W2959341277 cites W2130465252 @default.
- W2959341277 cites W2148143831 @default.
- W2959341277 cites W2148750103 @default.
- W2959341277 cites W2148859586 @default.
- W2959341277 cites W2151554678 @default.
- W2959341277 cites W2154263136 @default.
- W2959341277 cites W2157029647 @default.
- W2959341277 cites W2169193520 @default.
- W2959341277 cites W2230116493 @default.
- W2959341277 cites W2313222582 @default.
- W2959341277 cites W2338308982 @default.
- W2959341277 cites W2522681375 @default.
- W2959341277 cites W2525809479 @default.
- W2959341277 cites W2557983321 @default.
- W2959341277 cites W2592698165 @default.
- W2959341277 cites W2601675613 @default.
- W2959341277 cites W2771169143 @default.
- W2959341277 cites W2787204142 @default.
- W2959341277 cites W2796254023 @default.
- W2959341277 cites W2801482935 @default.
- W2959341277 cites W2803456931 @default.
- W2959341277 cites W2805393118 @default.
- W2959341277 cites W2805670355 @default.
- W2959341277 cites W2883369968 @default.
- W2959341277 cites W2883521375 @default.
- W2959341277 cites W3125937743 @default.
- W2959341277 cites W4240204380 @default.
- W2959341277 cites W4255533032 @default.
- W2959341277 cites W79139011 @default.
- W2959341277 cites W2766277706 @default.
- W2959341277 cites W2776850624 @default.
- W2959341277 doi "https://doi.org/10.1136/bmjopen-2018-028375" @default.
- W2959341277 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6624024" @default.
- W2959341277 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31292179" @default.
- W2959341277 hasPublicationYear "2019" @default.
- W2959341277 type Work @default.
- W2959341277 sameAs 2959341277 @default.
- W2959341277 citedByCount "15" @default.
- W2959341277 countsByYear W29593412772020 @default.
- W2959341277 countsByYear W29593412772021 @default.
- W2959341277 countsByYear W29593412772022 @default.
- W2959341277 countsByYear W29593412772023 @default.
- W2959341277 crossrefType "journal-article" @default.
- W2959341277 hasAuthorship W2959341277A5005426752 @default.
- W2959341277 hasAuthorship W2959341277A5019321925 @default.
- W2959341277 hasAuthorship W2959341277A5025495401 @default.
- W2959341277 hasAuthorship W2959341277A5026215303 @default.
- W2959341277 hasAuthorship W2959341277A5031640821 @default.