Matches in SemOpenAlex for { <https://semopenalex.org/work/W2959365414> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W2959365414 abstract "An (n,r)-arc in PG(2,q) is a set of n points such that each line contains at most r of the selected points. It is well-known that (n,r)-arcs in PG(2,q) correspond to projective linear codes. Let m_r(2,q) denote the maximal number n of points for which an (n,r)-arc in PG(2,q) exists. In this paper we obtain improved lower bounds on m_r(2,q) by explicitly constructing (n,r)-arcs. Some of the constructed (n,r)-arcs correspond to linear codes meeting the Griesmer bound. All results are obtained by integer linear programming." @default.
- W2959365414 created "2019-07-23" @default.
- W2959365414 creator A5079433304 @default.
- W2959365414 date "2018-08-08" @default.
- W2959365414 modified "2023-09-28" @default.
- W2959365414 title "New lower bounds on the size of (n,r)-arcs in PG(2,q)" @default.
- W2959365414 cites W1965097372 @default.
- W2959365414 cites W1995183330 @default.
- W2959365414 cites W1997277729 @default.
- W2959365414 cites W2229871733 @default.
- W2959365414 cites W2467369624 @default.
- W2959365414 cites W2595584341 @default.
- W2959365414 hasPublicationYear "2018" @default.
- W2959365414 type Work @default.
- W2959365414 sameAs 2959365414 @default.
- W2959365414 citedByCount "0" @default.
- W2959365414 crossrefType "posted-content" @default.
- W2959365414 hasAuthorship W2959365414A5079433304 @default.
- W2959365414 hasConcept C114614502 @default.
- W2959365414 hasConcept C118615104 @default.
- W2959365414 hasConcept C177264268 @default.
- W2959365414 hasConcept C198352243 @default.
- W2959365414 hasConcept C199360897 @default.
- W2959365414 hasConcept C2524010 @default.
- W2959365414 hasConcept C33923547 @default.
- W2959365414 hasConcept C41008148 @default.
- W2959365414 hasConcept C83415579 @default.
- W2959365414 hasConcept C97137487 @default.
- W2959365414 hasConceptScore W2959365414C114614502 @default.
- W2959365414 hasConceptScore W2959365414C118615104 @default.
- W2959365414 hasConceptScore W2959365414C177264268 @default.
- W2959365414 hasConceptScore W2959365414C198352243 @default.
- W2959365414 hasConceptScore W2959365414C199360897 @default.
- W2959365414 hasConceptScore W2959365414C2524010 @default.
- W2959365414 hasConceptScore W2959365414C33923547 @default.
- W2959365414 hasConceptScore W2959365414C41008148 @default.
- W2959365414 hasConceptScore W2959365414C83415579 @default.
- W2959365414 hasConceptScore W2959365414C97137487 @default.
- W2959365414 hasOpenAccess W2959365414 @default.
- W2959365414 hasRelatedWork W1512918272 @default.
- W2959365414 hasRelatedWork W1799670433 @default.
- W2959365414 hasRelatedWork W1967246084 @default.
- W2959365414 hasRelatedWork W1967457258 @default.
- W2959365414 hasRelatedWork W1998786313 @default.
- W2959365414 hasRelatedWork W2001746495 @default.
- W2959365414 hasRelatedWork W2002089472 @default.
- W2959365414 hasRelatedWork W2023908631 @default.
- W2959365414 hasRelatedWork W2521937525 @default.
- W2959365414 hasRelatedWork W2782122293 @default.
- W2959365414 hasRelatedWork W2796970230 @default.
- W2959365414 hasRelatedWork W2905644805 @default.
- W2959365414 hasRelatedWork W2951184275 @default.
- W2959365414 hasRelatedWork W2951293563 @default.
- W2959365414 hasRelatedWork W2952311749 @default.
- W2959365414 hasRelatedWork W2969399013 @default.
- W2959365414 hasRelatedWork W3026056635 @default.
- W2959365414 hasRelatedWork W3106160126 @default.
- W2959365414 hasRelatedWork W3110066975 @default.
- W2959365414 hasRelatedWork W3176937098 @default.
- W2959365414 isParatext "false" @default.
- W2959365414 isRetracted "false" @default.
- W2959365414 magId "2959365414" @default.
- W2959365414 workType "article" @default.