Matches in SemOpenAlex for { <https://semopenalex.org/work/W2959589769> ?p ?o ?g. }
- W2959589769 endingPage "5774" @default.
- W2959589769 startingPage "5761" @default.
- W2959589769 abstract "ABSTRACT Future Square Kilometre Array (SKA) surveys are expected to generate huge data sets of 21 cm maps on cosmological scales from the Epoch of Reionization. We assess the viability of exploiting machine learning techniques, namely, convolutional neural networks (CNNs), to simultaneously estimate the astrophysical and cosmological parameters from 21 cm maps from seminumerical simulations. We further convert the simulated 21 cm maps into SKA-like mock maps using the detailed SKA antennae distribution, thermal noise, and a recipe for foreground cleaning. We successfully design two CNN architectures (VGGNet-like and ResNet-like) that are both efficiently able to extract simultaneously three astrophysical parameters, namely the photon escape fraction (fesc), the ionizing emissivity power dependence on halo mass (Cion), and the ionizing emissivity redshift evolution index (Dion), and three cosmological parameters, namely the matter density parameter (Ωm), the dimensionless Hubble constant (h), and the matter fluctuation amplitude (σ8), from 21 cm maps at several redshifts. With the presence of noise from SKA, our designed CNNs are still able to recover these astrophysical and cosmological parameters with great accuracy ($R^{2} gt 92{{ rm per cent}}$), improving to $R^{2} gt 99{{ rm per cent}}$ towards low-redshift and low neutral fraction values. Our results show that future 21 cm observations can play a key role to break degeneracy between models and tightly constrain the astrophysical and cosmological parameters, using only few frequency channels." @default.
- W2959589769 created "2019-07-23" @default.
- W2959589769 creator A5007769341 @default.
- W2959589769 creator A5013342528 @default.
- W2959589769 creator A5038445526 @default.
- W2959589769 date "2020-05-04" @default.
- W2959589769 modified "2023-10-13" @default.
- W2959589769 title "Constraining the astrophysics and cosmology from 21 cm tomography using deep learning with the SKA" @default.
- W2959589769 cites W1499466692 @default.
- W2959589769 cites W1931693470 @default.
- W2959589769 cites W1956810680 @default.
- W2959589769 cites W1969649996 @default.
- W2959589769 cites W1975679485 @default.
- W2959589769 cites W1985198043 @default.
- W2959589769 cites W1994024526 @default.
- W2959589769 cites W1998515260 @default.
- W2959589769 cites W2005050514 @default.
- W2959589769 cites W2005683908 @default.
- W2959589769 cites W2005728913 @default.
- W2959589769 cites W2016061923 @default.
- W2959589769 cites W2051885722 @default.
- W2959589769 cites W2071121484 @default.
- W2959589769 cites W2081282337 @default.
- W2959589769 cites W2084135442 @default.
- W2959589769 cites W2090655001 @default.
- W2959589769 cites W2093073139 @default.
- W2959589769 cites W2093632493 @default.
- W2959589769 cites W2107158296 @default.
- W2959589769 cites W2132866814 @default.
- W2959589769 cites W2136969532 @default.
- W2959589769 cites W2147626801 @default.
- W2959589769 cites W2148806080 @default.
- W2959589769 cites W2150261663 @default.
- W2959589769 cites W2162362007 @default.
- W2959589769 cites W2170502516 @default.
- W2959589769 cites W2184943620 @default.
- W2959589769 cites W2195397625 @default.
- W2959589769 cites W2216289406 @default.
- W2959589769 cites W2410037812 @default.
- W2959589769 cites W2493313686 @default.
- W2959589769 cites W2562103247 @default.
- W2959589769 cites W2596852126 @default.
- W2959589769 cites W2597067050 @default.
- W2959589769 cites W2609922885 @default.
- W2959589769 cites W2615694652 @default.
- W2959589769 cites W2741359341 @default.
- W2959589769 cites W2751397457 @default.
- W2959589769 cites W2785262243 @default.
- W2959589769 cites W2787427854 @default.
- W2959589769 cites W2835063354 @default.
- W2959589769 cites W2889702073 @default.
- W2959589769 cites W2890475738 @default.
- W2959589769 cites W2909174297 @default.
- W2959589769 cites W2981681931 @default.
- W2959589769 cites W3012391848 @default.
- W2959589769 cites W3098417826 @default.
- W2959589769 cites W3098466129 @default.
- W2959589769 cites W3099411310 @default.
- W2959589769 cites W3100514957 @default.
- W2959589769 cites W3100820659 @default.
- W2959589769 cites W3101873082 @default.
- W2959589769 cites W3103730211 @default.
- W2959589769 cites W4292875581 @default.
- W2959589769 cites W4302466842 @default.
- W2959589769 doi "https://doi.org/10.1093/mnras/staa1151" @default.
- W2959589769 hasPublicationYear "2020" @default.
- W2959589769 type Work @default.
- W2959589769 sameAs 2959589769 @default.
- W2959589769 citedByCount "38" @default.
- W2959589769 countsByYear W29595897692019 @default.
- W2959589769 countsByYear W29595897692020 @default.
- W2959589769 countsByYear W29595897692021 @default.
- W2959589769 countsByYear W29595897692022 @default.
- W2959589769 countsByYear W29595897692023 @default.
- W2959589769 crossrefType "journal-article" @default.
- W2959589769 hasAuthorship W2959589769A5007769341 @default.
- W2959589769 hasAuthorship W2959589769A5013342528 @default.
- W2959589769 hasAuthorship W2959589769A5038445526 @default.
- W2959589769 hasBestOaLocation W29595897692 @default.
- W2959589769 hasConcept C120665830 @default.
- W2959589769 hasConcept C121332964 @default.
- W2959589769 hasConcept C159249277 @default.
- W2959589769 hasConcept C163651212 @default.
- W2959589769 hasConcept C26405456 @default.
- W2959589769 hasConcept C2779337418 @default.
- W2959589769 hasConcept C33024259 @default.
- W2959589769 hasConcept C44870925 @default.
- W2959589769 hasConcept C69672822 @default.
- W2959589769 hasConcept C98444146 @default.
- W2959589769 hasConceptScore W2959589769C120665830 @default.
- W2959589769 hasConceptScore W2959589769C121332964 @default.
- W2959589769 hasConceptScore W2959589769C159249277 @default.
- W2959589769 hasConceptScore W2959589769C163651212 @default.
- W2959589769 hasConceptScore W2959589769C26405456 @default.
- W2959589769 hasConceptScore W2959589769C2779337418 @default.
- W2959589769 hasConceptScore W2959589769C33024259 @default.
- W2959589769 hasConceptScore W2959589769C44870925 @default.
- W2959589769 hasConceptScore W2959589769C69672822 @default.