Matches in SemOpenAlex for { <https://semopenalex.org/work/W2959645102> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2959645102 endingPage "106830" @default.
- W2959645102 startingPage "106830" @default.
- W2959645102 abstract "Abstract Brain tumor classification is a challenging task in the field of medical image processing. The present study proposes a hybrid method using Neutrosophy and Convolutional Neural Network (NS-CNN). It aims to classify tumor region areas that are segmented from brain images as benign and malignant. In the first stage, MRI images were segmented using the neutrosophic set – expert maximum fuzzy-sure entropy (NS-EMFSE) approach. The features of the segmented brain images in the classification stage were obtained by CNN and classified using SVM and KNN classifiers. Experimental evaluation was carried out based on 5-fold cross-validation on 80 of benign tumors and 80 of malign tumors. The findings demonstrated that the CNN features displayed a high classification performance with different classifiers. Experimental results indicate that CNN features displayed a better classification performance with SVM as simulation results validated output data with an average success of 95.62%." @default.
- W2959645102 created "2019-07-23" @default.
- W2959645102 creator A5003301865 @default.
- W2959645102 creator A5070904845 @default.
- W2959645102 creator A5083532997 @default.
- W2959645102 creator A5089519097 @default.
- W2959645102 date "2019-12-01" @default.
- W2959645102 modified "2023-10-16" @default.
- W2959645102 title "Brain tumor detection based on Convolutional Neural Network with neutrosophic expert maximum fuzzy sure entropy" @default.
- W2959645102 cites W1884191083 @default.
- W2959645102 cites W2076063813 @default.
- W2959645102 cites W2187181723 @default.
- W2959645102 cites W2534299759 @default.
- W2959645102 cites W2538556778 @default.
- W2959645102 cites W2586305720 @default.
- W2959645102 cites W2587828787 @default.
- W2959645102 cites W2588755956 @default.
- W2959645102 cites W2759474193 @default.
- W2959645102 cites W2886785490 @default.
- W2959645102 cites W2890998367 @default.
- W2959645102 cites W2895683352 @default.
- W2959645102 cites W2905103531 @default.
- W2959645102 cites W2915042201 @default.
- W2959645102 cites W2940773812 @default.
- W2959645102 doi "https://doi.org/10.1016/j.measurement.2019.07.058" @default.
- W2959645102 hasPublicationYear "2019" @default.
- W2959645102 type Work @default.
- W2959645102 sameAs 2959645102 @default.
- W2959645102 citedByCount "134" @default.
- W2959645102 countsByYear W29596451022019 @default.
- W2959645102 countsByYear W29596451022020 @default.
- W2959645102 countsByYear W29596451022021 @default.
- W2959645102 countsByYear W29596451022022 @default.
- W2959645102 countsByYear W29596451022023 @default.
- W2959645102 crossrefType "journal-article" @default.
- W2959645102 hasAuthorship W2959645102A5003301865 @default.
- W2959645102 hasAuthorship W2959645102A5070904845 @default.
- W2959645102 hasAuthorship W2959645102A5083532997 @default.
- W2959645102 hasAuthorship W2959645102A5089519097 @default.
- W2959645102 hasConcept C106301342 @default.
- W2959645102 hasConcept C119857082 @default.
- W2959645102 hasConcept C121332964 @default.
- W2959645102 hasConcept C153180895 @default.
- W2959645102 hasConcept C154945302 @default.
- W2959645102 hasConcept C41008148 @default.
- W2959645102 hasConcept C58166 @default.
- W2959645102 hasConcept C62520636 @default.
- W2959645102 hasConcept C81363708 @default.
- W2959645102 hasConcept C9679016 @default.
- W2959645102 hasConceptScore W2959645102C106301342 @default.
- W2959645102 hasConceptScore W2959645102C119857082 @default.
- W2959645102 hasConceptScore W2959645102C121332964 @default.
- W2959645102 hasConceptScore W2959645102C153180895 @default.
- W2959645102 hasConceptScore W2959645102C154945302 @default.
- W2959645102 hasConceptScore W2959645102C41008148 @default.
- W2959645102 hasConceptScore W2959645102C58166 @default.
- W2959645102 hasConceptScore W2959645102C62520636 @default.
- W2959645102 hasConceptScore W2959645102C81363708 @default.
- W2959645102 hasConceptScore W2959645102C9679016 @default.
- W2959645102 hasLocation W29596451021 @default.
- W2959645102 hasOpenAccess W2959645102 @default.
- W2959645102 hasPrimaryLocation W29596451021 @default.
- W2959645102 hasRelatedWork W2175746458 @default.
- W2959645102 hasRelatedWork W2732542196 @default.
- W2959645102 hasRelatedWork W2738221750 @default.
- W2959645102 hasRelatedWork W2760085659 @default.
- W2959645102 hasRelatedWork W2912288872 @default.
- W2959645102 hasRelatedWork W3012978760 @default.
- W2959645102 hasRelatedWork W3027997911 @default.
- W2959645102 hasRelatedWork W3081496756 @default.
- W2959645102 hasRelatedWork W3093612317 @default.
- W2959645102 hasRelatedWork W4287776258 @default.
- W2959645102 hasVolume "147" @default.
- W2959645102 isParatext "false" @default.
- W2959645102 isRetracted "false" @default.
- W2959645102 magId "2959645102" @default.
- W2959645102 workType "article" @default.