Matches in SemOpenAlex for { <https://semopenalex.org/work/W2959647960> ?p ?o ?g. }
- W2959647960 abstract "With the rapid development of military, aerospace, and precision manufacturing technology, a multitude of situations need to carry out a large-range and high-precision distance measurement. The growth of measurement applications has led to a higher requirement for the laser ranging technology which can be accomplished by using different patterns. At present, the pulse laser ranging method is widely used for medium-range and long-range measurement because of the fast measurement speed and considerable measurement range. However, the ranging precision is low. The short-distance measurement mostly adopts the phase-shift laser ranging method which has high ranging accuracy but limited measurement range. Therefore, the research on lifting the accuracy of pulse laser ranging method and extending the measurement range of the phase-shift laser ranging method will be carried out.In this thesis, combining the existing pulse laser ranging system and phase-shift laser ranging system, dual-frequency and single-frequency hybrid pulse and phase-shift laser ranging systems are proposed. The basis for solving the current problems of poor measurement precision in pulse laser ranging method and short measurement distance in phase-shift laser ranging method are provided. Also, the designed structures have a broad application prospect in the fields of industrial production, military, and aviation.At the beginning of the thesis, the principle and characteristics of the current typical laser ranging methods are introduced and analyzed. According to the Fourier Series theory, the spectrum analysis of the pulse signal and the relationship between the pulse signal and the same-frequency sinusoidal signal, the idea of phase-shift laser ranging based on pulse modulation signal is generated. Instead of a continuous sinusoidal signal, the laser is modulated with a periodic pulse signal. Distance measurement by calculating the phase difference on the sinusoidal signal extracted from the pulse signal with the same frequency at the receiving end.Based on the principle of conventional dual-frequency phase-shift laser ranging method, a dual-frequency pulse laser ranging method is proposed. The distance to be measured is obtained by transmitting two periodic pulse signals with different frequency and then combining the implementation of rough and accurate measurement outcomes. Afterward, a single-frequency pulse laser ranging method is introduced. After receiving the pulse signal, the direct counter method is used to realize rough measurement and phase-shift of the co-frequency sinusoidal signal is utilized to improve the ranging accuracy. This proposed model has the advantages of high ranging precision and long-distance measurement without any other auxiliary frequency.The accuracy of the phase difference calculation is the most critical element in both the dual-frequency and single-frequency laser ranging systems. Currently, the commonly used phase difference calculation methods operated in phase-shift laser ranging system are digital synchronous detection, fast Fourier transform method, and all phase fast Fourier transform method. Published works have discussed the performance of frequency estimation and initial phase calculation using these approaches. In this thesis, the precision of phase difference measurement based on these methods above is compared. The effects of normalized frequency deviation, white Gaussian noise, harmonics are simulated in MATLAB. Simulation results show that all phase fast Fourier transform method has a superior anti-noise ability so that exceptional accuracy of phase difference measurement can be achieved. Furthermore, as the number of sampling points increases, all phase fast Fourier transform method will obtain a more accurate calculation consequence.Finally, this thesis carries on the co-simulation test of the designed dual-frequency and single-frequency hybrid pulse and phase-shift laser ranging systems in Optisystem and MATLAB. The transmitting frequencies of pulse signals operated in the dual-frequency method are 15 MHz and 150 KHz. The pulse used in the single-frequency method is set to 15 MHz. In the simulation, the performance of proposed methods is tested by setting various measuring distance. When the number of sampling points is 1024, the standard deviation and ranging error of the dual-frequency method are 3.72 cm and 13.6 cm within 963.15 meters. For the single-frequency method, the results show a 3.78 cm standard deviation and 14.6 cm ranging error. Simulation results illustrate that the proposed ranging methods have lower ranging error compared with recently published works. It means that the combination of the pulse method and the phase-shift method can achieve high-accuracy and long-range measurement." @default.
- W2959647960 created "2019-07-23" @default.
- W2959647960 creator A5030200553 @default.
- W2959647960 date "2018-10-01" @default.
- W2959647960 modified "2023-09-27" @default.
- W2959647960 title "High Precision Hybrid Pulse and Phase-Shift Laser Ranging System" @default.
- W2959647960 cites W1241110089 @default.
- W2959647960 cites W1481154334 @default.
- W2959647960 cites W152854211 @default.
- W2959647960 cites W1976137013 @default.
- W2959647960 cites W1978952423 @default.
- W2959647960 cites W1984094996 @default.
- W2959647960 cites W1998413630 @default.
- W2959647960 cites W2000967192 @default.
- W2959647960 cites W2001658382 @default.
- W2959647960 cites W2002788302 @default.
- W2959647960 cites W2004322879 @default.
- W2959647960 cites W2011427830 @default.
- W2959647960 cites W2013928079 @default.
- W2959647960 cites W2017058230 @default.
- W2959647960 cites W2019388327 @default.
- W2959647960 cites W2020165728 @default.
- W2959647960 cites W2021063678 @default.
- W2959647960 cites W2027911527 @default.
- W2959647960 cites W2033621346 @default.
- W2959647960 cites W2045528440 @default.
- W2959647960 cites W2070871304 @default.
- W2959647960 cites W2071345450 @default.
- W2959647960 cites W2076511451 @default.
- W2959647960 cites W2078073057 @default.
- W2959647960 cites W2091505087 @default.
- W2959647960 cites W2096119105 @default.
- W2959647960 cites W2096478815 @default.
- W2959647960 cites W2100142363 @default.
- W2959647960 cites W2111484530 @default.
- W2959647960 cites W2113222684 @default.
- W2959647960 cites W2115744554 @default.
- W2959647960 cites W2116794345 @default.
- W2959647960 cites W2122248324 @default.
- W2959647960 cites W2135935841 @default.
- W2959647960 cites W2145264652 @default.
- W2959647960 cites W2165597533 @default.
- W2959647960 cites W2169162190 @default.
- W2959647960 cites W2333013454 @default.
- W2959647960 cites W2341115255 @default.
- W2959647960 cites W2533816287 @default.
- W2959647960 cites W2558667450 @default.
- W2959647960 cites W2739614167 @default.
- W2959647960 cites W3148279746 @default.
- W2959647960 cites W1570209439 @default.
- W2959647960 cites W3150260113 @default.
- W2959647960 hasPublicationYear "2018" @default.
- W2959647960 type Work @default.
- W2959647960 sameAs 2959647960 @default.
- W2959647960 citedByCount "0" @default.
- W2959647960 crossrefType "dissertation" @default.
- W2959647960 hasAuthorship W2959647960A5030200553 @default.
- W2959647960 hasConcept C115051666 @default.
- W2959647960 hasConcept C120665830 @default.
- W2959647960 hasConcept C121332964 @default.
- W2959647960 hasConcept C127413603 @default.
- W2959647960 hasConcept C146978453 @default.
- W2959647960 hasConcept C204323151 @default.
- W2959647960 hasConcept C2780167933 @default.
- W2959647960 hasConcept C2985143356 @default.
- W2959647960 hasConcept C520434653 @default.
- W2959647960 hasConcept C76155785 @default.
- W2959647960 hasConcept C94915269 @default.
- W2959647960 hasConceptScore W2959647960C115051666 @default.
- W2959647960 hasConceptScore W2959647960C120665830 @default.
- W2959647960 hasConceptScore W2959647960C121332964 @default.
- W2959647960 hasConceptScore W2959647960C127413603 @default.
- W2959647960 hasConceptScore W2959647960C146978453 @default.
- W2959647960 hasConceptScore W2959647960C204323151 @default.
- W2959647960 hasConceptScore W2959647960C2780167933 @default.
- W2959647960 hasConceptScore W2959647960C2985143356 @default.
- W2959647960 hasConceptScore W2959647960C520434653 @default.
- W2959647960 hasConceptScore W2959647960C76155785 @default.
- W2959647960 hasConceptScore W2959647960C94915269 @default.
- W2959647960 hasLocation W29596479601 @default.
- W2959647960 hasOpenAccess W2959647960 @default.
- W2959647960 hasPrimaryLocation W29596479601 @default.
- W2959647960 hasRelatedWork W1935652653 @default.
- W2959647960 hasRelatedWork W2044333893 @default.
- W2959647960 hasRelatedWork W2078097221 @default.
- W2959647960 hasRelatedWork W2089388093 @default.
- W2959647960 hasRelatedWork W2171655056 @default.
- W2959647960 hasRelatedWork W2182477897 @default.
- W2959647960 hasRelatedWork W2350103755 @default.
- W2959647960 hasRelatedWork W2366611049 @default.
- W2959647960 hasRelatedWork W2371672714 @default.
- W2959647960 hasRelatedWork W2372183706 @default.
- W2959647960 hasRelatedWork W2384211387 @default.
- W2959647960 hasRelatedWork W2385470293 @default.
- W2959647960 hasRelatedWork W2388194466 @default.
- W2959647960 hasRelatedWork W2393593206 @default.
- W2959647960 hasRelatedWork W2544561529 @default.
- W2959647960 hasRelatedWork W2792147348 @default.
- W2959647960 hasRelatedWork W2799743367 @default.
- W2959647960 hasRelatedWork W2892627998 @default.