Matches in SemOpenAlex for { <https://semopenalex.org/work/W29596644> ?p ?o ?g. }
- W29596644 abstract "In the current dissertation we work in set theory and we study both various large cardinal hierarchies and issues related to forcing axioms and generic absoluteness. The necessary preliminaries may be found, as it should be anticipated, in the first chapter. In Chapter 2, we study several C(n) - cardinals as introduced by J. Bagaria (cf. [1]). In the context of an elementary embedding associated with some fixed C(n) - cardinal, and under adequate assumptions, we derive consistency (upper) bounds for the large cardinal notion at hand; in particular, we deal with the C(n) - versions of tallness, superstrongness, strongness, supercompactness, and extendibility. As far as the two latter notions are concerned, we further study their connection, giving an equivalent formulation of extendibility as well. We also consider the cases of C(n) -Woodin and of C(n) – strongly compact cardinals which were not studied in [1] and we get characterizations for them in terms of their ordinary counterparts. In Chapter 3, we briefly discuss the interaction of C(n) – cardinals with the forcing machinery, presenting some applications of ordinary techniques. In Chapter 4, we turn our attention to extendible cardinals; by a combination of methods and results from Chapter 2, we establish the existence of apt Laver functions for them. Although the latter was already known (cf. [2]), it is proved from a fresh viewpoint, one which nicely ties with the material of Chapter 5. We also argue that in the case of extendible cardinals one cannot use such Laver functions in order to attain indestructibility results. Along the way, we give an additional characterization of extendibility, and we, moreover, show that the global GCH can be forced while preserving such cardinals. In Chapter 5, we focus on the resurrection axioms as they are introduced by J.D. Hamkins and T. Johnstone (cf. [3]). Initially, we consider the class of stationary preserving posets and, assuming the (consistency of the) existence of an extendible cardinal, we obtain a model in which the resurrection axiom for this class holds. By analysing the proof of the previous result, we are led to much stronger forms of resurrection for which we introduce a family of axioms under the general name “Unbounded Resurrection”. We then prove that the consistency of these axioms follows from that of (the existence of) an extendible cardinal and that, for the appropriate classes of posets, they are strengthenings of the forcing axioms PFA and MM. We furthermore consider several implications of the unbounded resurrection axioms (e.g., their effect on the continuum, for the classes of c.c.c. and of sygma- closed posets) together with their connection with the corresponding ones of [3]. Finally, we also establish some consistency lower bounds for such axioms, mainly by deriving failures of (weak versions of) squares. We conclude our current mathematical quest with a few final remarks and a small list of open questions, followed by an Appendix on extenders and (some of) their applications. References [1] Bagaria, J., C (n)–cardinals. In Archive Math. Logic, Vol. 51 (3–4), pp. 213–240, 2012. [2] Corazza, P., Laver sequences for extendible and super–almost–huge cardinals. In J. Symbolic Logic, Vol. 64 (3), pp. 963–983, 1999. [3] Johnstone, T., Notes to “The Resurrection Axioms”. Unpublished notes (2009)." @default.
- W29596644 created "2016-06-24" @default.
- W29596644 creator A5002297502 @default.
- W29596644 date "2012-12-14" @default.
- W29596644 modified "2023-09-25" @default.
- W29596644 title "Large cardinals and resurrection axioms" @default.
- W29596644 cites W115467291 @default.
- W29596644 cites W1512911579 @default.
- W29596644 cites W155697877 @default.
- W29596644 cites W1595388840 @default.
- W29596644 cites W1822815181 @default.
- W29596644 cites W1870892404 @default.
- W29596644 cites W1978413491 @default.
- W29596644 cites W1987822864 @default.
- W29596644 cites W2018421936 @default.
- W29596644 cites W2021954794 @default.
- W29596644 cites W2025518919 @default.
- W29596644 cites W2035295073 @default.
- W29596644 cites W2043313700 @default.
- W29596644 cites W2049652789 @default.
- W29596644 cites W2077466758 @default.
- W29596644 cites W2090425123 @default.
- W29596644 cites W2094042091 @default.
- W29596644 cites W2119787852 @default.
- W29596644 cites W2168662095 @default.
- W29596644 cites W2185258205 @default.
- W29596644 cites W2318231933 @default.
- W29596644 cites W2319297044 @default.
- W29596644 cites W2594069757 @default.
- W29596644 cites W2603697732 @default.
- W29596644 cites W2911866879 @default.
- W29596644 cites W2949946187 @default.
- W29596644 cites W63070768 @default.
- W29596644 hasPublicationYear "2012" @default.
- W29596644 type Work @default.
- W29596644 sameAs 29596644 @default.
- W29596644 citedByCount "2" @default.
- W29596644 countsByYear W295966442013 @default.
- W29596644 countsByYear W295966442019 @default.
- W29596644 crossrefType "dissertation" @default.
- W29596644 hasAuthorship W29596644A5002297502 @default.
- W29596644 hasConcept C10138342 @default.
- W29596644 hasConcept C111472728 @default.
- W29596644 hasConcept C118615104 @default.
- W29596644 hasConcept C134306372 @default.
- W29596644 hasConcept C138885662 @default.
- W29596644 hasConcept C144237770 @default.
- W29596644 hasConcept C151730666 @default.
- W29596644 hasConcept C154945302 @default.
- W29596644 hasConcept C162324750 @default.
- W29596644 hasConcept C167729594 @default.
- W29596644 hasConcept C182306322 @default.
- W29596644 hasConcept C197115733 @default.
- W29596644 hasConcept C199343813 @default.
- W29596644 hasConcept C202444582 @default.
- W29596644 hasConcept C2524010 @default.
- W29596644 hasConcept C2776436953 @default.
- W29596644 hasConcept C2777686260 @default.
- W29596644 hasConcept C2779343474 @default.
- W29596644 hasConcept C2780102774 @default.
- W29596644 hasConcept C33923547 @default.
- W29596644 hasConcept C41008148 @default.
- W29596644 hasConcept C41608201 @default.
- W29596644 hasConcept C71924100 @default.
- W29596644 hasConcept C86803240 @default.
- W29596644 hasConceptScore W29596644C10138342 @default.
- W29596644 hasConceptScore W29596644C111472728 @default.
- W29596644 hasConceptScore W29596644C118615104 @default.
- W29596644 hasConceptScore W29596644C134306372 @default.
- W29596644 hasConceptScore W29596644C138885662 @default.
- W29596644 hasConceptScore W29596644C144237770 @default.
- W29596644 hasConceptScore W29596644C151730666 @default.
- W29596644 hasConceptScore W29596644C154945302 @default.
- W29596644 hasConceptScore W29596644C162324750 @default.
- W29596644 hasConceptScore W29596644C167729594 @default.
- W29596644 hasConceptScore W29596644C182306322 @default.
- W29596644 hasConceptScore W29596644C197115733 @default.
- W29596644 hasConceptScore W29596644C199343813 @default.
- W29596644 hasConceptScore W29596644C202444582 @default.
- W29596644 hasConceptScore W29596644C2524010 @default.
- W29596644 hasConceptScore W29596644C2776436953 @default.
- W29596644 hasConceptScore W29596644C2777686260 @default.
- W29596644 hasConceptScore W29596644C2779343474 @default.
- W29596644 hasConceptScore W29596644C2780102774 @default.
- W29596644 hasConceptScore W29596644C33923547 @default.
- W29596644 hasConceptScore W29596644C41008148 @default.
- W29596644 hasConceptScore W29596644C41608201 @default.
- W29596644 hasConceptScore W29596644C71924100 @default.
- W29596644 hasConceptScore W29596644C86803240 @default.
- W29596644 hasLocation W295966441 @default.
- W29596644 hasOpenAccess W29596644 @default.
- W29596644 hasPrimaryLocation W295966441 @default.
- W29596644 hasRelatedWork W149671515 @default.
- W29596644 hasRelatedWork W1985784884 @default.
- W29596644 hasRelatedWork W2006357231 @default.
- W29596644 hasRelatedWork W2008204459 @default.
- W29596644 hasRelatedWork W2015329281 @default.
- W29596644 hasRelatedWork W2043122368 @default.
- W29596644 hasRelatedWork W2071689212 @default.
- W29596644 hasRelatedWork W2110407978 @default.