Matches in SemOpenAlex for { <https://semopenalex.org/work/W2959677688> ?p ?o ?g. }
- W2959677688 endingPage "22" @default.
- W2959677688 startingPage "3" @default.
- W2959677688 abstract "The two traditional hard problems underlying the security of lattice-based cryptography are the shortest vector problem (SVP) and the closest vector problem (CVP). For a long time, lattice enumeration was considered the fastest method for solving these problems in high dimensions, but recent work on memory-intensive methods has resulted in lattice sieving overtaking enumeration both in theory and in practice. Some of the recent improvements [Ducas, Eurocrypt 2018; Laarhoven–Mariano, PQCrypto 2018; Albrecht–Ducas–Herold–Kirshanova–Postlethwaite–Stevens, 2018] are based on the fact that these methods find more than just one short lattice vector, and this additional data can be reused effectively later on to solve other, closely related problems faster. Similarly, results for the preprocessing version of CVP (CVPP) have demonstrated that once this initial data has been generated, instances of CVP can be solved faster than when solving them directly, albeit with worse memory complexities [Laarhoven, SAC 2016]. In this work we study CVPP in terms of approximate Voronoi cells, and obtain better time and space complexities using randomized slicing, which is similar in spirit to using randomized bases in lattice enumeration [Gama–Nguyen–Regev, Eurocrypt 2010]. With this approach, we improve upon the state-of-the-art complexities for CVPP, both theoretically and experimentally, with a practical speedup of several orders of magnitude compared to non-preprocessed SVP or CVP. Such a fast CVPP solver may give rise to faster enumeration methods, where the CVPP solver is used to replace the bottom part of the enumeration tree, consisting of a batch of CVP instances in the same lattice. Asymptotically, we further show that we can solve an exponential number of instances of CVP in a lattice in essentially the same amount of time and space as the fastest method for solving just one CVP instance. This is in line with various recent results, showing that perhaps the biggest strength of memory-intensive methods lies in being able to reuse the generated data several times. Similar to [Ducas, Eurocrypt 2018], this further means that we can achieve a “few dimensions for free” for sieving for SVP or CVP, by doing $$varTheta (d/log d)$$ levels of enumeration on top of a CVPP solver based on approximate Voronoi cells." @default.
- W2959677688 created "2019-07-23" @default.
- W2959677688 creator A5004281203 @default.
- W2959677688 creator A5023482258 @default.
- W2959677688 creator A5067640262 @default.
- W2959677688 date "2019-01-01" @default.
- W2959677688 modified "2023-10-17" @default.
- W2959677688 title "Finding Closest Lattice Vectors Using Approximate Voronoi Cells" @default.
- W2959677688 cites W1014926417 @default.
- W2959677688 cites W118688756 @default.
- W2959677688 cites W1192290872 @default.
- W2959677688 cites W1447686308 @default.
- W2959677688 cites W1490056131 @default.
- W2959677688 cites W1556199233 @default.
- W2959677688 cites W1572143270 @default.
- W2959677688 cites W1597211008 @default.
- W2959677688 cites W1845765495 @default.
- W2959677688 cites W1973270757 @default.
- W2959677688 cites W1992938819 @default.
- W2959677688 cites W1996271812 @default.
- W2959677688 cites W1997002146 @default.
- W2959677688 cites W2000956176 @default.
- W2959677688 cites W2007712808 @default.
- W2959677688 cites W2012833704 @default.
- W2959677688 cites W2016297799 @default.
- W2959677688 cites W2017851434 @default.
- W2959677688 cites W2021907057 @default.
- W2959677688 cites W2038761522 @default.
- W2959677688 cites W2050689197 @default.
- W2959677688 cites W2060296335 @default.
- W2959677688 cites W2069278600 @default.
- W2959677688 cites W2101362102 @default.
- W2959677688 cites W2104242142 @default.
- W2959677688 cites W2111416661 @default.
- W2959677688 cites W2130161679 @default.
- W2959677688 cites W2140940105 @default.
- W2959677688 cites W2145065594 @default.
- W2959677688 cites W2147717514 @default.
- W2959677688 cites W2155178472 @default.
- W2959677688 cites W2168596303 @default.
- W2959677688 cites W2216359073 @default.
- W2959677688 cites W2224158271 @default.
- W2959677688 cites W2240389964 @default.
- W2959677688 cites W2303810956 @default.
- W2959677688 cites W2309085387 @default.
- W2959677688 cites W2393639016 @default.
- W2959677688 cites W2508919161 @default.
- W2959677688 cites W2514893051 @default.
- W2959677688 cites W2516575385 @default.
- W2959677688 cites W2584914299 @default.
- W2959677688 cites W2601026052 @default.
- W2959677688 cites W2609832077 @default.
- W2959677688 cites W2779943051 @default.
- W2959677688 cites W2789825276 @default.
- W2959677688 cites W2794791038 @default.
- W2959677688 cites W2795008797 @default.
- W2959677688 cites W2866028610 @default.
- W2959677688 cites W2890428003 @default.
- W2959677688 cites W2920734175 @default.
- W2959677688 cites W2949722426 @default.
- W2959677688 cites W2951649498 @default.
- W2959677688 cites W2952033682 @default.
- W2959677688 cites W3029285377 @default.
- W2959677688 cites W3104264786 @default.
- W2959677688 cites W4292408570 @default.
- W2959677688 cites W4297991408 @default.
- W2959677688 cites W65754961 @default.
- W2959677688 cites W998470930 @default.
- W2959677688 cites W2568095154 @default.
- W2959677688 cites W3029867009 @default.
- W2959677688 doi "https://doi.org/10.1007/978-3-030-25510-7_1" @default.
- W2959677688 hasPublicationYear "2019" @default.
- W2959677688 type Work @default.
- W2959677688 sameAs 2959677688 @default.
- W2959677688 citedByCount "16" @default.
- W2959677688 countsByYear W29596776882019 @default.
- W2959677688 countsByYear W29596776882020 @default.
- W2959677688 countsByYear W29596776882021 @default.
- W2959677688 countsByYear W29596776882022 @default.
- W2959677688 crossrefType "book-chapter" @default.
- W2959677688 hasAuthorship W2959677688A5004281203 @default.
- W2959677688 hasAuthorship W2959677688A5023482258 @default.
- W2959677688 hasAuthorship W2959677688A5067640262 @default.
- W2959677688 hasConcept C11413529 @default.
- W2959677688 hasConcept C114614502 @default.
- W2959677688 hasConcept C121332964 @default.
- W2959677688 hasConcept C137660015 @default.
- W2959677688 hasConcept C144901912 @default.
- W2959677688 hasConcept C154945302 @default.
- W2959677688 hasConcept C156340839 @default.
- W2959677688 hasConcept C168482242 @default.
- W2959677688 hasConcept C169699857 @default.
- W2959677688 hasConcept C173608175 @default.
- W2959677688 hasConcept C178489894 @default.
- W2959677688 hasConcept C199360897 @default.
- W2959677688 hasConcept C24881265 @default.
- W2959677688 hasConcept C24890656 @default.
- W2959677688 hasConcept C2524010 @default.