Matches in SemOpenAlex for { <https://semopenalex.org/work/W2959686711> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W2959686711 endingPage "340" @default.
- W2959686711 startingPage "332" @default.
- W2959686711 abstract "Sentiment analysis (SA) is a scholarly process of extricating and classifying individuals’ emotions and feedbacks expressed in source text content. It is one of the pursued subfields of Computational Linguistics (CL) and Natural Language Processing (NLP). The evolution of social media based applications has generated a big amount of personalized reviews of different related information on the Web in the form of tweets, status updates, and many others. Several approaches have come into the spotlight in recent years to accomplish SA, the most part of SA researches have been applied utilizing the English language. SA in Arabic online social media may be slacking behind commonly because of the difficulties with handling the morphologically complex Arabic natural language and the lack and absence of accessible tools and assets for extracting Arabic opinions from the text. This research is aimed to analyze the collected twitter posts in different Arabic Dialects and a comparison between the various algorithms used for SA with various n-gram as a feature extraction method. The measurement of the performance of different algorithms is evaluated in terms of recall, precision, f-measure, and accuracy. The experiment results show that unigram with Passive Aggressive (PA) or Ridge Regression (RR) gives the highest accuracy 99.96 %." @default.
- W2959686711 created "2019-07-23" @default.
- W2959686711 creator A5041720905 @default.
- W2959686711 creator A5047440961 @default.
- W2959686711 creator A5057125109 @default.
- W2959686711 creator A5061699800 @default.
- W2959686711 date "2019-01-01" @default.
- W2959686711 modified "2023-10-08" @default.
- W2959686711 title "Implementation of Machine Learning Algorithms in Arabic Sentiment Analysis Using N-Gram Features" @default.
- W2959686711 cites W1534466353 @default.
- W2959686711 cites W1965606641 @default.
- W2959686711 cites W2004691253 @default.
- W2959686711 cites W2012070465 @default.
- W2959686711 cites W2069922379 @default.
- W2959686711 cites W2114524997 @default.
- W2959686711 cites W2116216325 @default.
- W2959686711 cites W2215376118 @default.
- W2959686711 cites W2562617836 @default.
- W2959686711 cites W272117402 @default.
- W2959686711 cites W2767369037 @default.
- W2959686711 cites W2783356947 @default.
- W2959686711 cites W4236941202 @default.
- W2959686711 doi "https://doi.org/10.1016/j.procs.2019.06.048" @default.
- W2959686711 hasPublicationYear "2019" @default.
- W2959686711 type Work @default.
- W2959686711 sameAs 2959686711 @default.
- W2959686711 citedByCount "26" @default.
- W2959686711 countsByYear W29596867112019 @default.
- W2959686711 countsByYear W29596867112020 @default.
- W2959686711 countsByYear W29596867112021 @default.
- W2959686711 countsByYear W29596867112022 @default.
- W2959686711 countsByYear W29596867112023 @default.
- W2959686711 crossrefType "journal-article" @default.
- W2959686711 hasAuthorship W2959686711A5041720905 @default.
- W2959686711 hasAuthorship W2959686711A5047440961 @default.
- W2959686711 hasAuthorship W2959686711A5057125109 @default.
- W2959686711 hasAuthorship W2959686711A5061699800 @default.
- W2959686711 hasBestOaLocation W29596867111 @default.
- W2959686711 hasConcept C111919701 @default.
- W2959686711 hasConcept C117884012 @default.
- W2959686711 hasConcept C119857082 @default.
- W2959686711 hasConcept C136764020 @default.
- W2959686711 hasConcept C137293760 @default.
- W2959686711 hasConcept C138885662 @default.
- W2959686711 hasConcept C154945302 @default.
- W2959686711 hasConcept C204321447 @default.
- W2959686711 hasConcept C23123220 @default.
- W2959686711 hasConcept C2776401178 @default.
- W2959686711 hasConcept C41008148 @default.
- W2959686711 hasConcept C41895202 @default.
- W2959686711 hasConcept C518677369 @default.
- W2959686711 hasConcept C66402592 @default.
- W2959686711 hasConcept C81669768 @default.
- W2959686711 hasConcept C96455323 @default.
- W2959686711 hasConcept C98045186 @default.
- W2959686711 hasConceptScore W2959686711C111919701 @default.
- W2959686711 hasConceptScore W2959686711C117884012 @default.
- W2959686711 hasConceptScore W2959686711C119857082 @default.
- W2959686711 hasConceptScore W2959686711C136764020 @default.
- W2959686711 hasConceptScore W2959686711C137293760 @default.
- W2959686711 hasConceptScore W2959686711C138885662 @default.
- W2959686711 hasConceptScore W2959686711C154945302 @default.
- W2959686711 hasConceptScore W2959686711C204321447 @default.
- W2959686711 hasConceptScore W2959686711C23123220 @default.
- W2959686711 hasConceptScore W2959686711C2776401178 @default.
- W2959686711 hasConceptScore W2959686711C41008148 @default.
- W2959686711 hasConceptScore W2959686711C41895202 @default.
- W2959686711 hasConceptScore W2959686711C518677369 @default.
- W2959686711 hasConceptScore W2959686711C66402592 @default.
- W2959686711 hasConceptScore W2959686711C81669768 @default.
- W2959686711 hasConceptScore W2959686711C96455323 @default.
- W2959686711 hasConceptScore W2959686711C98045186 @default.
- W2959686711 hasLocation W29596867111 @default.
- W2959686711 hasOpenAccess W2959686711 @default.
- W2959686711 hasPrimaryLocation W29596867111 @default.
- W2959686711 hasRelatedWork W2438765327 @default.
- W2959686711 hasRelatedWork W2548633793 @default.
- W2959686711 hasRelatedWork W2596247554 @default.
- W2959686711 hasRelatedWork W2941935829 @default.
- W2959686711 hasRelatedWork W3013279174 @default.
- W2959686711 hasRelatedWork W3132372214 @default.
- W2959686711 hasRelatedWork W4224284088 @default.
- W2959686711 hasRelatedWork W4286571989 @default.
- W2959686711 hasRelatedWork W4301373556 @default.
- W2959686711 hasRelatedWork W4317653575 @default.
- W2959686711 hasVolume "154" @default.
- W2959686711 isParatext "false" @default.
- W2959686711 isRetracted "false" @default.
- W2959686711 magId "2959686711" @default.
- W2959686711 workType "article" @default.