Matches in SemOpenAlex for { <https://semopenalex.org/work/W2959696098> ?p ?o ?g. }
- W2959696098 abstract "Abstract Likelihood-free inference provides a framework for performing rigorous Bayesian inference using only forward simulations, properly accounting for all physical and observational effects that can be successfully included in the simulations. The key challenge for likelihood-free applications in cosmology, where simulation is typically expensive, is developing methods that can achieve high-fidelity posterior inference with as few simulations as possible. Density-estimation likelihood-free inference (DELFI) methods turn inference into a density estimation task on a set of simulated data-parameter pairs, and give orders of magnitude improvements over traditional Approximate Bayesian Computation approaches to likelihood-free inference. In this paper we use neural density estimators (NDEs) to learn the likelihood function from a set of simulated datasets, with active learning to adaptively acquire simulations in the most relevant regions of parameter space on-the-fly. We demonstrate the approach on a number of cosmological case studies, showing that for typical problems high-fidelity posterior inference can be achieved with just $mathcal {O}(10^3)$ simulations or fewer. In addition to enabling efficient simulation-based inference, for simple problems where the form of the likelihood is known, DELFI offers a fast alternative to MCMC sampling, giving orders of magnitude speed-up in some cases. Finally, we introduce pydelfi – a flexible public implementation of DELFI with NDEs and active learning – available at https://github.com/justinalsing/pydelfi." @default.
- W2959696098 created "2019-07-23" @default.
- W2959696098 creator A5050309898 @default.
- W2959696098 creator A5050531002 @default.
- W2959696098 creator A5056141212 @default.
- W2959696098 creator A5080268373 @default.
- W2959696098 date "2019-07-16" @default.
- W2959696098 modified "2023-10-16" @default.
- W2959696098 title "Fast likelihood-free cosmology with neural density estimators and active learning" @default.
- W2959696098 cites W1480767606 @default.
- W2959696098 cites W1538493107 @default.
- W2959696098 cites W1601840795 @default.
- W2959696098 cites W1663973292 @default.
- W2959696098 cites W1807499209 @default.
- W2959696098 cites W1895086215 @default.
- W2959696098 cites W1965327243 @default.
- W2959696098 cites W1973904296 @default.
- W2959696098 cites W1976579441 @default.
- W2959696098 cites W1987158444 @default.
- W2959696098 cites W2027747340 @default.
- W2959696098 cites W2035877537 @default.
- W2959696098 cites W2042745735 @default.
- W2959696098 cites W2045456075 @default.
- W2959696098 cites W2045656233 @default.
- W2959696098 cites W2046484633 @default.
- W2959696098 cites W2066703355 @default.
- W2959696098 cites W2083061716 @default.
- W2959696098 cites W2088111938 @default.
- W2959696098 cites W2095266808 @default.
- W2959696098 cites W2095705004 @default.
- W2959696098 cites W2097755895 @default.
- W2959696098 cites W2112370854 @default.
- W2959696098 cites W2158593212 @default.
- W2959696098 cites W2185369182 @default.
- W2959696098 cites W2259243443 @default.
- W2959696098 cites W2370208167 @default.
- W2959696098 cites W2460698931 @default.
- W2959696098 cites W2469973335 @default.
- W2959696098 cites W2563413209 @default.
- W2959696098 cites W2569199829 @default.
- W2959696098 cites W2611245299 @default.
- W2959696098 cites W2738936744 @default.
- W2959696098 cites W2741359341 @default.
- W2959696098 cites W2775042031 @default.
- W2959696098 cites W2781708744 @default.
- W2959696098 cites W2787427854 @default.
- W2959696098 cites W2790165025 @default.
- W2959696098 cites W2791995286 @default.
- W2959696098 cites W2798398359 @default.
- W2959696098 cites W2799038815 @default.
- W2959696098 cites W2803889050 @default.
- W2959696098 cites W2804609220 @default.
- W2959696098 cites W2884612602 @default.
- W2959696098 cites W2887210412 @default.
- W2959696098 cites W2891681160 @default.
- W2959696098 cites W2895866691 @default.
- W2959696098 cites W2897868884 @default.
- W2959696098 cites W2898457303 @default.
- W2959696098 cites W2898930121 @default.
- W2959696098 cites W2904703261 @default.
- W2959696098 cites W2909174297 @default.
- W2959696098 cites W2910179300 @default.
- W2959696098 cites W2949119760 @default.
- W2959696098 cites W2962990490 @default.
- W2959696098 cites W2963284157 @default.
- W2959696098 cites W2963335681 @default.
- W2959696098 cites W2963822196 @default.
- W2959696098 cites W2964121744 @default.
- W2959696098 cites W2964129402 @default.
- W2959696098 cites W3006943238 @default.
- W2959696098 cites W3022116341 @default.
- W2959696098 cites W3098179439 @default.
- W2959696098 cites W3098329702 @default.
- W2959696098 cites W3098407486 @default.
- W2959696098 cites W3098691801 @default.
- W2959696098 cites W3100386365 @default.
- W2959696098 cites W3101509247 @default.
- W2959696098 cites W3101517874 @default.
- W2959696098 cites W3101847915 @default.
- W2959696098 cites W3102082949 @default.
- W2959696098 cites W3103711115 @default.
- W2959696098 cites W3105398571 @default.
- W2959696098 cites W3105678606 @default.
- W2959696098 cites W3105814508 @default.
- W2959696098 cites W3106513449 @default.
- W2959696098 cites W3106530008 @default.
- W2959696098 cites W3122921871 @default.
- W2959696098 doi "https://doi.org/10.1093/mnras/stz1960" @default.
- W2959696098 hasPublicationYear "2019" @default.
- W2959696098 type Work @default.
- W2959696098 sameAs 2959696098 @default.
- W2959696098 citedByCount "78" @default.
- W2959696098 countsByYear W29596960982019 @default.
- W2959696098 countsByYear W29596960982020 @default.
- W2959696098 countsByYear W29596960982021 @default.
- W2959696098 countsByYear W29596960982022 @default.
- W2959696098 countsByYear W29596960982023 @default.
- W2959696098 crossrefType "journal-article" @default.
- W2959696098 hasAuthorship W2959696098A5050309898 @default.
- W2959696098 hasAuthorship W2959696098A5050531002 @default.