Matches in SemOpenAlex for { <https://semopenalex.org/work/W2959763773> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W2959763773 abstract "Bidirectional Long Short-Term Memory (LSTM) is a special kind of Recurrent Neural Network (RNN) architecture which is designed to model sequences and their long-range dependencies more precisely than RNNs. This paper proposes to use deep bidirectional LSTM for sequence modeling as an approach to perform locality-sensitive hashing (LSH)-based sequence alignment. In particular, we use the deep bidirectional LSTM to learn features of LSH. The obtained LSH is then can be utilized to perform sequence alignment. We demonstrate the feasibility of the modeling sequences using the proposed LSTM-based model by aligning the short read queries over the reference genome. We use the human reference genome as our training dataset, in addition to a set of short reads generated using Illumina sequencing technology. The ultimate goal is to align query sequences into a reference genome. We first decompose the reference genome into multiple sequences. These sequences are then fed into the bidirectional LSTM model and then mapped into fixed-length vectors. These vectors are what we call the trained LSH, which can then be used for sequence alignment. The case study shows that using the introduced LSTM-based model, we achieve higher accuracy with the number of epochs." @default.
- W2959763773 created "2019-07-23" @default.
- W2959763773 creator A5046014937 @default.
- W2959763773 date "2019-07-01" @default.
- W2959763773 modified "2023-10-18" @default.
- W2959763773 title "Modeling Genome Data Using Bidirectional LSTM" @default.
- W2959763773 cites W2038271017 @default.
- W2959763773 cites W2064675550 @default.
- W2959763773 cites W2087064593 @default.
- W2959763773 cites W2117683095 @default.
- W2959763773 cites W2119180969 @default.
- W2959763773 cites W2131774270 @default.
- W2959763773 cites W2134299061 @default.
- W2959763773 cites W2147717514 @default.
- W2959763773 cites W2162277333 @default.
- W2959763773 cites W2527308391 @default.
- W2959763773 cites W2909877301 @default.
- W2959763773 cites W2962988145 @default.
- W2959763773 cites W2963102406 @default.
- W2959763773 cites W2963543544 @default.
- W2959763773 cites W4243977291 @default.
- W2959763773 doi "https://doi.org/10.1109/compsac.2019.10204" @default.
- W2959763773 hasPublicationYear "2019" @default.
- W2959763773 type Work @default.
- W2959763773 sameAs 2959763773 @default.
- W2959763773 citedByCount "19" @default.
- W2959763773 countsByYear W29597637732019 @default.
- W2959763773 countsByYear W29597637732020 @default.
- W2959763773 countsByYear W29597637732021 @default.
- W2959763773 countsByYear W29597637732023 @default.
- W2959763773 crossrefType "proceedings-article" @default.
- W2959763773 hasAuthorship W2959763773A5046014937 @default.
- W2959763773 hasConcept C104317684 @default.
- W2959763773 hasConcept C108583219 @default.
- W2959763773 hasConcept C141231307 @default.
- W2959763773 hasConcept C147168706 @default.
- W2959763773 hasConcept C153180895 @default.
- W2959763773 hasConcept C154945302 @default.
- W2959763773 hasConcept C192953774 @default.
- W2959763773 hasConcept C2778112365 @default.
- W2959763773 hasConcept C38652104 @default.
- W2959763773 hasConcept C41008148 @default.
- W2959763773 hasConcept C50644808 @default.
- W2959763773 hasConcept C54355233 @default.
- W2959763773 hasConcept C67388219 @default.
- W2959763773 hasConcept C74270461 @default.
- W2959763773 hasConcept C86803240 @default.
- W2959763773 hasConcept C99138194 @default.
- W2959763773 hasConceptScore W2959763773C104317684 @default.
- W2959763773 hasConceptScore W2959763773C108583219 @default.
- W2959763773 hasConceptScore W2959763773C141231307 @default.
- W2959763773 hasConceptScore W2959763773C147168706 @default.
- W2959763773 hasConceptScore W2959763773C153180895 @default.
- W2959763773 hasConceptScore W2959763773C154945302 @default.
- W2959763773 hasConceptScore W2959763773C192953774 @default.
- W2959763773 hasConceptScore W2959763773C2778112365 @default.
- W2959763773 hasConceptScore W2959763773C38652104 @default.
- W2959763773 hasConceptScore W2959763773C41008148 @default.
- W2959763773 hasConceptScore W2959763773C50644808 @default.
- W2959763773 hasConceptScore W2959763773C54355233 @default.
- W2959763773 hasConceptScore W2959763773C67388219 @default.
- W2959763773 hasConceptScore W2959763773C74270461 @default.
- W2959763773 hasConceptScore W2959763773C86803240 @default.
- W2959763773 hasConceptScore W2959763773C99138194 @default.
- W2959763773 hasLocation W29597637731 @default.
- W2959763773 hasOpenAccess W2959763773 @default.
- W2959763773 hasPrimaryLocation W29597637731 @default.
- W2959763773 hasRelatedWork W1605991620 @default.
- W2959763773 hasRelatedWork W1835589799 @default.
- W2959763773 hasRelatedWork W2033383639 @default.
- W2959763773 hasRelatedWork W2080135560 @default.
- W2959763773 hasRelatedWork W2135779989 @default.
- W2959763773 hasRelatedWork W2144265691 @default.
- W2959763773 hasRelatedWork W2754607325 @default.
- W2959763773 hasRelatedWork W2975588143 @default.
- W2959763773 hasRelatedWork W3108918257 @default.
- W2959763773 hasRelatedWork W4387251676 @default.
- W2959763773 isParatext "false" @default.
- W2959763773 isRetracted "false" @default.
- W2959763773 magId "2959763773" @default.
- W2959763773 workType "article" @default.