Matches in SemOpenAlex for { <https://semopenalex.org/work/W2959991108> ?p ?o ?g. }
- W2959991108 abstract "The genetic component of many common traits is associated with the gene expression and several variants act as expression quantitative loci, regulating the gene expression in a tissue- specific manner. In this work, we applied tissue-specific cis-eQTL gene expression prediction models on the genotype of 808 samples including controls, patients with mild cognitive impairment, and subjects with Alzheimer Disease. We then dissected the imputed transcriptomic profiles by means of different unsupervised and supervised machine learning approaches to identify potential biological associations (all code is available at https://github.com/imerelli/DeepNeuro). Our analysis suggests that unsupervised and supervised methods can provide complementary information, which can be integrated for a better characterization of the underlying biological system. In particular, a variational autoencoder representation of the transcriptomic profiles, followed by a support vector machine classification, has been used for tissue-specific gene prioritizations. Interestingly, the achieved gene prioritization can be efficiently integrated as a feature selection step for improving the accuracy of deep learning classifier networks. The identified gene-tissue information suggests a potential role for inflammatory and regulatory processes in gut-brain axis related tissues. In line with the expected low heritability that can be apportioned to eQTL variants, we were able to achieve only relatively low prediction capability with deep learning classification models. However, our analysis revealed that the classification power strongly depends on the network structure, with recurrent neural networks being the best performing network class. Interestingly, cross-tissue analysis suggests a potentially greater role of models trained in brain tissues also by considering dementia-related endophenotypes. Overall, the present analysis suggests that the combination of supervised and unsupervised machine learning techniques can be used for the evaluation of high dimensional omics data." @default.
- W2959991108 created "2019-07-23" @default.
- W2959991108 creator A5001964789 @default.
- W2959991108 creator A5014248595 @default.
- W2959991108 creator A5015529755 @default.
- W2959991108 creator A5018615713 @default.
- W2959991108 creator A5026770450 @default.
- W2959991108 creator A5032669663 @default.
- W2959991108 creator A5035352293 @default.
- W2959991108 creator A5056748708 @default.
- W2959991108 creator A5091522881 @default.
- W2959991108 date "2019-09-03" @default.
- W2959991108 modified "2023-10-18" @default.
- W2959991108 title "Integration of Machine Learning Methods to Dissect Genetically Imputed Transcriptomic Profiles in Alzheimer’s Disease" @default.
- W2959991108 cites W1841850981 @default.
- W2959991108 cites W1914584256 @default.
- W2959991108 cites W1963728184 @default.
- W2959991108 cites W1989277387 @default.
- W2959991108 cites W2004159986 @default.
- W2959991108 cites W2007044705 @default.
- W2959991108 cites W2031880534 @default.
- W2959991108 cites W2042250149 @default.
- W2959991108 cites W2050604228 @default.
- W2959991108 cites W2074490119 @default.
- W2959991108 cites W2091447671 @default.
- W2959991108 cites W2092044345 @default.
- W2959991108 cites W2115779804 @default.
- W2959991108 cites W2117141979 @default.
- W2959991108 cites W2130410032 @default.
- W2959991108 cites W2140718540 @default.
- W2959991108 cites W2147477044 @default.
- W2959991108 cites W2160277958 @default.
- W2959991108 cites W2169389191 @default.
- W2959991108 cites W2177761847 @default.
- W2959991108 cites W2193207784 @default.
- W2959991108 cites W2205662772 @default.
- W2959991108 cites W2209106767 @default.
- W2959991108 cites W2264585211 @default.
- W2959991108 cites W2266996964 @default.
- W2959991108 cites W2297715268 @default.
- W2959991108 cites W2298946842 @default.
- W2959991108 cites W2311607323 @default.
- W2959991108 cites W2345958530 @default.
- W2959991108 cites W2412211151 @default.
- W2959991108 cites W2485069266 @default.
- W2959991108 cites W2511515754 @default.
- W2959991108 cites W2529241974 @default.
- W2959991108 cites W2531803125 @default.
- W2959991108 cites W2542768043 @default.
- W2959991108 cites W2555614465 @default.
- W2959991108 cites W2559588208 @default.
- W2959991108 cites W2567080747 @default.
- W2959991108 cites W2567437666 @default.
- W2959991108 cites W2587982675 @default.
- W2959991108 cites W2591470648 @default.
- W2959991108 cites W2594041373 @default.
- W2959991108 cites W2604754546 @default.
- W2959991108 cites W2725988230 @default.
- W2959991108 cites W2746163443 @default.
- W2959991108 cites W2750376078 @default.
- W2959991108 cites W2760285987 @default.
- W2959991108 cites W2764143266 @default.
- W2959991108 cites W2768978184 @default.
- W2959991108 cites W2780137098 @default.
- W2959991108 cites W2785609893 @default.
- W2959991108 cites W2787933178 @default.
- W2959991108 cites W2790539309 @default.
- W2959991108 cites W2808191239 @default.
- W2959991108 cites W2811371297 @default.
- W2959991108 cites W2884418830 @default.
- W2959991108 cites W2887015436 @default.
- W2959991108 cites W2888674814 @default.
- W2959991108 cites W2889932986 @default.
- W2959991108 cites W2894884164 @default.
- W2959991108 cites W2896205671 @default.
- W2959991108 cites W2896262061 @default.
- W2959991108 cites W2901340036 @default.
- W2959991108 cites W2911079020 @default.
- W2959991108 cites W2915583118 @default.
- W2959991108 cites W2919115771 @default.
- W2959991108 cites W2919311607 @default.
- W2959991108 cites W2922701384 @default.
- W2959991108 cites W2950235747 @default.
- W2959991108 cites W2951029718 @default.
- W2959991108 cites W2951413354 @default.
- W2959991108 cites W2952273935 @default.
- W2959991108 cites W2963905884 @default.
- W2959991108 cites W4237335579 @default.
- W2959991108 doi "https://doi.org/10.3389/fgene.2019.00726" @default.
- W2959991108 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6735530" @default.
- W2959991108 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31552082" @default.
- W2959991108 hasPublicationYear "2019" @default.
- W2959991108 type Work @default.
- W2959991108 sameAs 2959991108 @default.
- W2959991108 citedByCount "16" @default.
- W2959991108 countsByYear W29599911082020 @default.
- W2959991108 countsByYear W29599911082021 @default.
- W2959991108 countsByYear W29599911082022 @default.
- W2959991108 countsByYear W29599911082023 @default.
- W2959991108 crossrefType "journal-article" @default.