Matches in SemOpenAlex for { <https://semopenalex.org/work/W2960002701> ?p ?o ?g. }
- W2960002701 endingPage "1666" @default.
- W2960002701 startingPage "1666" @default.
- W2960002701 abstract "More than 50% of the world’s population consumes rice. Accurate and up-to-date information on rice field extent is important to help manage food and water security. Currently, field surveys or MODIS satellite data are used to estimate rice growing areas. This study presents a cost-effective methodology for near-real-time mapping and monitoring of rice growth extent and cropping patterns over a large area. This novel method produces high-resolution monthly maps (10 m resolution) of rice growing areas, as well as rice growth stages. The method integrates temporal Sentinel-1 data and rice phenological parameters with the Google Earth Engine (GEE) cloud-based platform. It uses monthly median time series of Sentinel-1 at VH polarization from September 2016 to October 2018. The two study areas are the northern region of West Java, Indonesia (0.75 million ha), and the Kedah and Perlis states in Malaysia (over 1 million ha). K-means clustering, hierarchical cluster analysis (HCA), and a visual interpretation of VH polarization time series profiles are used to generate rice extent, cropping patterns, and spatiotemporal distribution of growth stages. To automate the process, four supervised classification methods (support vector machine (SVM), artificial neural networks (ANN), random forests, and C5.0 classification models) were independently trialled to identify cluster labels. The results from each classification method were compared. The method can also forecast rice extent for up to two months. The VH polarization data can identify four growth stages of rice—T&P: tillage and planting (30 days); V: vegetative-1 and 2 (60 days); R: reproductive (30 days); M: maturity (30 days). Compared to field survey data, this method measures overall rice extent with an accuracy of 96.5% and a kappa coefficient of 0.92. SVM and ANN show better performance than random forest and C5.0 models. This simple and robust method could be rolled out across Southeast Asia, and could be used as an alternative to time-consuming, expensive field surveys." @default.
- W2960002701 created "2019-07-23" @default.
- W2960002701 creator A5025224041 @default.
- W2960002701 creator A5036070162 @default.
- W2960002701 creator A5051455406 @default.
- W2960002701 creator A5052541820 @default.
- W2960002701 creator A5067593271 @default.
- W2960002701 creator A5091193844 @default.
- W2960002701 date "2019-07-12" @default.
- W2960002701 modified "2023-10-05" @default.
- W2960002701 title "Automated Near-Real-Time Mapping and Monitoring of Rice Extent, Cropping Patterns, and Growth Stages in Southeast Asia Using Sentinel-1 Time Series on a Google Earth Engine Platform" @default.
- W2960002701 cites W1965093652 @default.
- W2960002701 cites W1978946460 @default.
- W2960002701 cites W1981213426 @default.
- W2960002701 cites W1990244654 @default.
- W2960002701 cites W1994366805 @default.
- W2960002701 cites W1999843495 @default.
- W2960002701 cites W2010918965 @default.
- W2960002701 cites W2025477961 @default.
- W2960002701 cites W2034394311 @default.
- W2960002701 cites W2052598506 @default.
- W2960002701 cites W2065396216 @default.
- W2960002701 cites W2075001972 @default.
- W2960002701 cites W2090563002 @default.
- W2960002701 cites W2120174322 @default.
- W2960002701 cites W2133941557 @default.
- W2960002701 cites W2157963336 @default.
- W2960002701 cites W2159992072 @default.
- W2960002701 cites W2173499079 @default.
- W2960002701 cites W2176432844 @default.
- W2960002701 cites W2186341334 @default.
- W2960002701 cites W2271438337 @default.
- W2960002701 cites W2290326488 @default.
- W2960002701 cites W2347192404 @default.
- W2960002701 cites W2402632305 @default.
- W2960002701 cites W2467335141 @default.
- W2960002701 cites W2468363661 @default.
- W2960002701 cites W2470314004 @default.
- W2960002701 cites W2473693581 @default.
- W2960002701 cites W250311148 @default.
- W2960002701 cites W2520905560 @default.
- W2960002701 cites W2585309444 @default.
- W2960002701 cites W2587031013 @default.
- W2960002701 cites W2594357171 @default.
- W2960002701 cites W2620657726 @default.
- W2960002701 cites W2626052112 @default.
- W2960002701 cites W2725897987 @default.
- W2960002701 cites W2766696621 @default.
- W2960002701 cites W2767166343 @default.
- W2960002701 cites W2769529227 @default.
- W2960002701 cites W2769642400 @default.
- W2960002701 cites W2784199496 @default.
- W2960002701 cites W2785681726 @default.
- W2960002701 cites W2789944198 @default.
- W2960002701 cites W2792632832 @default.
- W2960002701 cites W2796164191 @default.
- W2960002701 cites W2796859790 @default.
- W2960002701 cites W2889759488 @default.
- W2960002701 cites W2890199212 @default.
- W2960002701 cites W2890616304 @default.
- W2960002701 cites W2903064519 @default.
- W2960002701 cites W2905332762 @default.
- W2960002701 cites W2923165032 @default.
- W2960002701 cites W2939118835 @default.
- W2960002701 cites W2944708990 @default.
- W2960002701 cites W4231984903 @default.
- W2960002701 cites W600580655 @default.
- W2960002701 cites W762485137 @default.
- W2960002701 doi "https://doi.org/10.3390/rs11141666" @default.
- W2960002701 hasPublicationYear "2019" @default.
- W2960002701 type Work @default.
- W2960002701 sameAs 2960002701 @default.
- W2960002701 citedByCount "54" @default.
- W2960002701 countsByYear W29600027012019 @default.
- W2960002701 countsByYear W29600027012020 @default.
- W2960002701 countsByYear W29600027012021 @default.
- W2960002701 countsByYear W29600027012022 @default.
- W2960002701 countsByYear W29600027012023 @default.
- W2960002701 crossrefType "journal-article" @default.
- W2960002701 hasAuthorship W2960002701A5025224041 @default.
- W2960002701 hasAuthorship W2960002701A5036070162 @default.
- W2960002701 hasAuthorship W2960002701A5051455406 @default.
- W2960002701 hasAuthorship W2960002701A5052541820 @default.
- W2960002701 hasAuthorship W2960002701A5067593271 @default.
- W2960002701 hasAuthorship W2960002701A5091193844 @default.
- W2960002701 hasBestOaLocation W29600027011 @default.
- W2960002701 hasConcept C118518473 @default.
- W2960002701 hasConcept C119857082 @default.
- W2960002701 hasConcept C13558536 @default.
- W2960002701 hasConcept C151406439 @default.
- W2960002701 hasConcept C166957645 @default.
- W2960002701 hasConcept C205649164 @default.
- W2960002701 hasConcept C39432304 @default.
- W2960002701 hasConcept C41008148 @default.
- W2960002701 hasConcept C58640448 @default.
- W2960002701 hasConcept C62649853 @default.
- W2960002701 hasConcept C85582077 @default.
- W2960002701 hasConceptScore W2960002701C118518473 @default.