Matches in SemOpenAlex for { <https://semopenalex.org/work/W2960097748> ?p ?o ?g. }
- W2960097748 endingPage "111369" @default.
- W2960097748 startingPage "111369" @default.
- W2960097748 abstract "General solubility prediction models were developed using both classic least square and a novel method, in order to predict the solubility of the solutes in methanol + water binary solvent system. The novel approach to the regression analysis was investigated using an error minimization method. This aim was achieved by using a user-defined loss function regression, instead of the classic least square regression approach. To examine the results of the novel methodology, previous solubility data of 41 solutes were used for comparison. Both least square and novel methods were applied to the Jouyban-Acree model, Jouyban-Acree model in combination with Abraham parameters, and the modified Wilson model. The generally trained versions of the mentioned models produced more accurate predictions using the novel method than the least square method that has been confirmed by t-test analyses. The Jouyban-Acree model was the most accurate model among other generally trained models. Finally, the results were validated using a cross-validation analysis which produced the acceptable prediction accuracy of 24.6% mean percentage deviation (MPD) for the new methodology against 32.1% of the least square method. Also a new arithmetically transformed version of aforementioned models was introduced in this study to make the calculations easier to execute." @default.
- W2960097748 created "2019-07-23" @default.
- W2960097748 creator A5022516562 @default.
- W2960097748 creator A5055385897 @default.
- W2960097748 creator A5077374766 @default.
- W2960097748 creator A5081575972 @default.
- W2960097748 date "2019-10-01" @default.
- W2960097748 modified "2023-10-17" @default.
- W2960097748 title "A new computational method for drug solubility prediction in methanol + water mixtures" @default.
- W2960097748 cites W1551729708 @default.
- W2960097748 cites W1600161348 @default.
- W2960097748 cites W1994194400 @default.
- W2960097748 cites W1999771273 @default.
- W2960097748 cites W2016210396 @default.
- W2960097748 cites W2027898848 @default.
- W2960097748 cites W2029147694 @default.
- W2960097748 cites W2032927332 @default.
- W2960097748 cites W2062020451 @default.
- W2960097748 cites W2069926361 @default.
- W2960097748 cites W2075668029 @default.
- W2960097748 cites W2081602766 @default.
- W2960097748 cites W2127879843 @default.
- W2960097748 cites W2223972598 @default.
- W2960097748 cites W2250936750 @default.
- W2960097748 cites W2259991121 @default.
- W2960097748 cites W2274902419 @default.
- W2960097748 cites W2304614715 @default.
- W2960097748 cites W2315395554 @default.
- W2960097748 cites W2321902997 @default.
- W2960097748 cites W2325844659 @default.
- W2960097748 cites W2326151165 @default.
- W2960097748 cites W2330692700 @default.
- W2960097748 cites W2334323131 @default.
- W2960097748 cites W2337542454 @default.
- W2960097748 cites W2342294900 @default.
- W2960097748 cites W2345900193 @default.
- W2960097748 cites W2482273199 @default.
- W2960097748 cites W2507380695 @default.
- W2960097748 cites W2515516294 @default.
- W2960097748 cites W2520612409 @default.
- W2960097748 cites W2534840422 @default.
- W2960097748 cites W2561423327 @default.
- W2960097748 cites W2569314360 @default.
- W2960097748 cites W2594294556 @default.
- W2960097748 cites W2598379669 @default.
- W2960097748 cites W2610451035 @default.
- W2960097748 cites W2727855008 @default.
- W2960097748 cites W2736411991 @default.
- W2960097748 cites W2748894313 @default.
- W2960097748 cites W2783569904 @default.
- W2960097748 cites W2792353454 @default.
- W2960097748 cites W2804904415 @default.
- W2960097748 cites W2904241152 @default.
- W2960097748 doi "https://doi.org/10.1016/j.molliq.2019.111369" @default.
- W2960097748 hasPublicationYear "2019" @default.
- W2960097748 type Work @default.
- W2960097748 sameAs 2960097748 @default.
- W2960097748 citedByCount "7" @default.
- W2960097748 countsByYear W29600977482020 @default.
- W2960097748 countsByYear W29600977482021 @default.
- W2960097748 countsByYear W29600977482022 @default.
- W2960097748 crossrefType "journal-article" @default.
- W2960097748 hasAuthorship W2960097748A5022516562 @default.
- W2960097748 hasAuthorship W2960097748A5055385897 @default.
- W2960097748 hasAuthorship W2960097748A5077374766 @default.
- W2960097748 hasAuthorship W2960097748A5081575972 @default.
- W2960097748 hasConcept C105795698 @default.
- W2960097748 hasConcept C119857082 @default.
- W2960097748 hasConcept C126255220 @default.
- W2960097748 hasConcept C139945424 @default.
- W2960097748 hasConcept C147764199 @default.
- W2960097748 hasConcept C147789679 @default.
- W2960097748 hasConcept C152877465 @default.
- W2960097748 hasConcept C155574463 @default.
- W2960097748 hasConcept C178790620 @default.
- W2960097748 hasConcept C185592680 @default.
- W2960097748 hasConcept C2779607525 @default.
- W2960097748 hasConcept C33923547 @default.
- W2960097748 hasConcept C41008148 @default.
- W2960097748 hasConcept C48372109 @default.
- W2960097748 hasConcept C83546350 @default.
- W2960097748 hasConcept C94375191 @default.
- W2960097748 hasConceptScore W2960097748C105795698 @default.
- W2960097748 hasConceptScore W2960097748C119857082 @default.
- W2960097748 hasConceptScore W2960097748C126255220 @default.
- W2960097748 hasConceptScore W2960097748C139945424 @default.
- W2960097748 hasConceptScore W2960097748C147764199 @default.
- W2960097748 hasConceptScore W2960097748C147789679 @default.
- W2960097748 hasConceptScore W2960097748C152877465 @default.
- W2960097748 hasConceptScore W2960097748C155574463 @default.
- W2960097748 hasConceptScore W2960097748C178790620 @default.
- W2960097748 hasConceptScore W2960097748C185592680 @default.
- W2960097748 hasConceptScore W2960097748C2779607525 @default.
- W2960097748 hasConceptScore W2960097748C33923547 @default.
- W2960097748 hasConceptScore W2960097748C41008148 @default.
- W2960097748 hasConceptScore W2960097748C48372109 @default.
- W2960097748 hasConceptScore W2960097748C83546350 @default.
- W2960097748 hasConceptScore W2960097748C94375191 @default.