Matches in SemOpenAlex for { <https://semopenalex.org/work/W2960197288> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W2960197288 endingPage "341" @default.
- W2960197288 startingPage "323" @default.
- W2960197288 abstract "With the development of mobile technologies and IOT devices, the world has stepped into the era of big data and social media as well. Having collected data from social media, business companies can easily understand behavior and buying patterns of the individual customers. The data is being collected via machine learning algorithms and social media platforms. A prediction mechanism is needed to process these larger data. Based on the results generated by big data framework, business companies can directly target individuals for sending advertises. In this chapter, an advertisement prediction framework has been proposed that uses prediction approaches on big data platforms. In addition, social media platforms are used to collect data that is based on user interest. The experiments has been performed on real-time data that is collected from social media platforms. The introduced framework can be served as a benchmark for business companies to send appropriate advertisement to the individuals." @default.
- W2960197288 created "2019-07-23" @default.
- W2960197288 creator A5036428718 @default.
- W2960197288 creator A5073624587 @default.
- W2960197288 creator A5081531822 @default.
- W2960197288 date "2019-07-18" @default.
- W2960197288 modified "2023-09-27" @default.
- W2960197288 title "Advertisement Prediction in Social Media Environment Using Big Data Framework" @default.
- W2960197288 cites W1123101191 @default.
- W2960197288 cites W1635427931 @default.
- W2960197288 cites W2019759670 @default.
- W2960197288 cites W2085582472 @default.
- W2960197288 cites W2139809240 @default.
- W2960197288 cites W2160660844 @default.
- W2960197288 cites W2182617692 @default.
- W2960197288 cites W2589714335 @default.
- W2960197288 cites W2590105483 @default.
- W2960197288 cites W2625392185 @default.
- W2960197288 cites W2768050674 @default.
- W2960197288 cites W2780195716 @default.
- W2960197288 cites W2796186337 @default.
- W2960197288 cites W2802493209 @default.
- W2960197288 cites W2909573130 @default.
- W2960197288 cites W4236122429 @default.
- W2960197288 cites W4238394804 @default.
- W2960197288 doi "https://doi.org/10.1007/978-981-13-8759-3_12" @default.
- W2960197288 hasPublicationYear "2019" @default.
- W2960197288 type Work @default.
- W2960197288 sameAs 2960197288 @default.
- W2960197288 citedByCount "2" @default.
- W2960197288 countsByYear W29601972882021 @default.
- W2960197288 countsByYear W29601972882023 @default.
- W2960197288 crossrefType "book-chapter" @default.
- W2960197288 hasAuthorship W2960197288A5036428718 @default.
- W2960197288 hasAuthorship W2960197288A5073624587 @default.
- W2960197288 hasAuthorship W2960197288A5081531822 @default.
- W2960197288 hasConcept C112698675 @default.
- W2960197288 hasConcept C124101348 @default.
- W2960197288 hasConcept C136764020 @default.
- W2960197288 hasConcept C144133560 @default.
- W2960197288 hasConcept C2522767166 @default.
- W2960197288 hasConcept C41008148 @default.
- W2960197288 hasConcept C518677369 @default.
- W2960197288 hasConcept C75684735 @default.
- W2960197288 hasConceptScore W2960197288C112698675 @default.
- W2960197288 hasConceptScore W2960197288C124101348 @default.
- W2960197288 hasConceptScore W2960197288C136764020 @default.
- W2960197288 hasConceptScore W2960197288C144133560 @default.
- W2960197288 hasConceptScore W2960197288C2522767166 @default.
- W2960197288 hasConceptScore W2960197288C41008148 @default.
- W2960197288 hasConceptScore W2960197288C518677369 @default.
- W2960197288 hasConceptScore W2960197288C75684735 @default.
- W2960197288 hasLocation W29601972881 @default.
- W2960197288 hasOpenAccess W2960197288 @default.
- W2960197288 hasPrimaryLocation W29601972881 @default.
- W2960197288 hasRelatedWork W2471546600 @default.
- W2960197288 hasRelatedWork W2521611460 @default.
- W2960197288 hasRelatedWork W2577361510 @default.
- W2960197288 hasRelatedWork W2796950926 @default.
- W2960197288 hasRelatedWork W2949561664 @default.
- W2960197288 hasRelatedWork W3175948276 @default.
- W2960197288 hasRelatedWork W4226040512 @default.
- W2960197288 hasRelatedWork W4232177053 @default.
- W2960197288 hasRelatedWork W4299638067 @default.
- W2960197288 hasRelatedWork W4309949240 @default.
- W2960197288 isParatext "false" @default.
- W2960197288 isRetracted "false" @default.
- W2960197288 magId "2960197288" @default.
- W2960197288 workType "book-chapter" @default.