Matches in SemOpenAlex for { <https://semopenalex.org/work/W2960212105> ?p ?o ?g. }
- W2960212105 endingPage "396" @default.
- W2960212105 startingPage "381" @default.
- W2960212105 abstract "Due to rising labor costs, cross-trained worker assignment has become increasingly critical for constructing an efficient and flexible cellular manufacturing systems. Related studies concentrated on assigning skilled workers with different skill levels to tasks according to capacity or cost benefits. However, these studies have yet examined how workers’ learning and forgetting affect total cost in the context of cross-training conducted in multiple cells. This study presents a new model of cross-training with learning and forgetting effects aiming at addressing the problem of worker assignment spanning multiple cells. Considering the computational complexity of this model, an adaptive memetic differential search algorithm is proposed. In the proposed algorithm, a subgradient method is employed to enhance the capability for local exploitation, and a dynamic Cauchy mutation-based method is developed to enhance the model’s global exploration capability. Furthermore, an intelligent selection method based on previous effectiveness is implemented to balance exploration and exploitation and to ensure adaptability. Experimental results indicate the efficiency and effectiveness of the proposed models and of the developed algorithms." @default.
- W2960212105 created "2019-07-23" @default.
- W2960212105 creator A5000919145 @default.
- W2960212105 creator A5015658376 @default.
- W2960212105 creator A5024454462 @default.
- W2960212105 creator A5025856446 @default.
- W2960212105 creator A5033870719 @default.
- W2960212105 creator A5043271631 @default.
- W2960212105 creator A5061226199 @default.
- W2960212105 date "2019-10-01" @default.
- W2960212105 modified "2023-10-02" @default.
- W2960212105 title "Worker assignment with learning-forgetting effect in cellular manufacturing system using adaptive memetic differential search algorithm" @default.
- W2960212105 cites W1576373160 @default.
- W2960212105 cites W1955291487 @default.
- W2960212105 cites W1965955414 @default.
- W2960212105 cites W1966304371 @default.
- W2960212105 cites W1970715810 @default.
- W2960212105 cites W1973802342 @default.
- W2960212105 cites W1975147693 @default.
- W2960212105 cites W1976975981 @default.
- W2960212105 cites W1978025869 @default.
- W2960212105 cites W1978479030 @default.
- W2960212105 cites W1979744100 @default.
- W2960212105 cites W1981333180 @default.
- W2960212105 cites W1984077949 @default.
- W2960212105 cites W1984384771 @default.
- W2960212105 cites W1984894142 @default.
- W2960212105 cites W1985250294 @default.
- W2960212105 cites W1989659218 @default.
- W2960212105 cites W1994638726 @default.
- W2960212105 cites W1996662920 @default.
- W2960212105 cites W1997861224 @default.
- W2960212105 cites W1998573641 @default.
- W2960212105 cites W1998752573 @default.
- W2960212105 cites W2001896690 @default.
- W2960212105 cites W2009166502 @default.
- W2960212105 cites W2011376873 @default.
- W2960212105 cites W2013752535 @default.
- W2960212105 cites W2014335976 @default.
- W2960212105 cites W2015600410 @default.
- W2960212105 cites W2017196268 @default.
- W2960212105 cites W2018338129 @default.
- W2960212105 cites W2022431646 @default.
- W2960212105 cites W2024888997 @default.
- W2960212105 cites W2027475317 @default.
- W2960212105 cites W2037378755 @default.
- W2960212105 cites W2037894794 @default.
- W2960212105 cites W2040425447 @default.
- W2960212105 cites W2044775507 @default.
- W2960212105 cites W2064526337 @default.
- W2960212105 cites W2069402755 @default.
- W2960212105 cites W2072090325 @default.
- W2960212105 cites W2074627421 @default.
- W2960212105 cites W2088512416 @default.
- W2960212105 cites W2090712972 @default.
- W2960212105 cites W2124289529 @default.
- W2960212105 cites W2129426306 @default.
- W2960212105 cites W2130220434 @default.
- W2960212105 cites W2131613989 @default.
- W2960212105 cites W2136820311 @default.
- W2960212105 cites W2147869241 @default.
- W2960212105 cites W2149150655 @default.
- W2960212105 cites W2157916406 @default.
- W2960212105 cites W2159345671 @default.
- W2960212105 cites W2173971609 @default.
- W2960212105 cites W2192935608 @default.
- W2960212105 cites W2202652932 @default.
- W2960212105 cites W2283806956 @default.
- W2960212105 cites W2319924983 @default.
- W2960212105 cites W2330601180 @default.
- W2960212105 cites W2341025900 @default.
- W2960212105 cites W2468302128 @default.
- W2960212105 cites W2546902623 @default.
- W2960212105 cites W2548539412 @default.
- W2960212105 cites W2591585664 @default.
- W2960212105 cites W2618849455 @default.
- W2960212105 cites W2794136136 @default.
- W2960212105 cites W2896273718 @default.
- W2960212105 cites W2902416711 @default.
- W2960212105 cites W2908218698 @default.
- W2960212105 cites W2942502317 @default.
- W2960212105 doi "https://doi.org/10.1016/j.cie.2019.07.028" @default.
- W2960212105 hasPublicationYear "2019" @default.
- W2960212105 type Work @default.
- W2960212105 sameAs 2960212105 @default.
- W2960212105 citedByCount "17" @default.
- W2960212105 countsByYear W29602121052020 @default.
- W2960212105 countsByYear W29602121052021 @default.
- W2960212105 countsByYear W29602121052022 @default.
- W2960212105 countsByYear W29602121052023 @default.
- W2960212105 crossrefType "journal-article" @default.
- W2960212105 hasAuthorship W2960212105A5000919145 @default.
- W2960212105 hasAuthorship W2960212105A5015658376 @default.
- W2960212105 hasAuthorship W2960212105A5024454462 @default.
- W2960212105 hasAuthorship W2960212105A5025856446 @default.
- W2960212105 hasAuthorship W2960212105A5033870719 @default.
- W2960212105 hasAuthorship W2960212105A5043271631 @default.
- W2960212105 hasAuthorship W2960212105A5061226199 @default.