Matches in SemOpenAlex for { <https://semopenalex.org/work/W2960236182> ?p ?o ?g. }
- W2960236182 endingPage "14" @default.
- W2960236182 startingPage "3" @default.
- W2960236182 abstract "The analysis of sound information is helpful for audio surveillance, multimedia information retrieval, audio tagging, and forensic applications. Environmental audio scene recognition (EASR) and sound event recognition (SER) for audio surveillance are challenging tasks due to the presence of multiple sound sources, background noises, and the existence of overlapping or polyphonic contexts. We focus on learning robust and compact representations for environmental audio scenes and sound events using mel-frequency cepstral coefficients as basic features, which have proved to be effective in speech and audio-related tasks. In this paper, we propose a common hybrid model-based framework that learns representations with the help of generative models. We explore instance-specific adapted Gaussian mixture models for environmental audio scenes and instance-specific hidden Markov models for sound events to compute a robust, compact, and discriminatory representations. A discriminative model based classifier is then used to recognize these representations as environmental audio scenes and sound events. The performance of the proposed approaches is evaluated using the DCASE2013 scene dataset and TUT-DCASE2016 scene dataset for EASR task. Environmental Sound Classification (ESC-10) and UrbanSound8K datasets are used for SER task. The recognition accuracy of the proposed framework is significantly better than many of the state-of-the-art approaches proposed in the recent literature. The discriminative nature of the model-driven representations leads to improved efficiency for EASR and SER task. The proposed approaches are more suitable for tasks with less training data." @default.
- W2960236182 created "2019-07-23" @default.
- W2960236182 creator A5039142604 @default.
- W2960236182 creator A5062445099 @default.
- W2960236182 date "2020-01-01" @default.
- W2960236182 modified "2023-10-18" @default.
- W2960236182 title "Generative Model Driven Representation Learning in a Hybrid Framework for Environmental Audio Scene and Sound Event Recognition" @default.
- W2960236182 cites W1496704041 @default.
- W2960236182 cites W1844944916 @default.
- W2960236182 cites W1970578576 @default.
- W2960236182 cites W1972567154 @default.
- W2960236182 cites W2038484192 @default.
- W2960236182 cites W2041823554 @default.
- W2960236182 cites W2052666245 @default.
- W2960236182 cites W2060043685 @default.
- W2960236182 cites W2077159900 @default.
- W2960236182 cites W2082803386 @default.
- W2960236182 cites W2086023031 @default.
- W2960236182 cites W2086384421 @default.
- W2960236182 cites W2088850873 @default.
- W2960236182 cites W2100969003 @default.
- W2960236182 cites W2108287924 @default.
- W2960236182 cites W2124735751 @default.
- W2960236182 cites W2137343183 @default.
- W2960236182 cites W2153635508 @default.
- W2960236182 cites W2163922914 @default.
- W2960236182 cites W2170355566 @default.
- W2960236182 cites W2214128417 @default.
- W2960236182 cites W2295707189 @default.
- W2960236182 cites W2525932717 @default.
- W2960236182 cites W2534681680 @default.
- W2960236182 cites W2561826558 @default.
- W2960236182 cites W2566935005 @default.
- W2960236182 cites W2570915410 @default.
- W2960236182 cites W2612810660 @default.
- W2960236182 cites W2766397045 @default.
- W2960236182 cites W2775794021 @default.
- W2960236182 cites W2783561121 @default.
- W2960236182 cites W2888469011 @default.
- W2960236182 cites W2962922588 @default.
- W2960236182 cites W2964048371 @default.
- W2960236182 cites W3098357269 @default.
- W2960236182 cites W3103485325 @default.
- W2960236182 cites W3123940584 @default.
- W2960236182 doi "https://doi.org/10.1109/tmm.2019.2925956" @default.
- W2960236182 hasPublicationYear "2020" @default.
- W2960236182 type Work @default.
- W2960236182 sameAs 2960236182 @default.
- W2960236182 citedByCount "18" @default.
- W2960236182 countsByYear W29602361822020 @default.
- W2960236182 countsByYear W29602361822021 @default.
- W2960236182 countsByYear W29602361822022 @default.
- W2960236182 countsByYear W29602361822023 @default.
- W2960236182 crossrefType "journal-article" @default.
- W2960236182 hasAuthorship W2960236182A5039142604 @default.
- W2960236182 hasAuthorship W2960236182A5062445099 @default.
- W2960236182 hasConcept C107457646 @default.
- W2960236182 hasConcept C121332964 @default.
- W2960236182 hasConcept C127220857 @default.
- W2960236182 hasConcept C13895895 @default.
- W2960236182 hasConcept C154945302 @default.
- W2960236182 hasConcept C167966045 @default.
- W2960236182 hasConcept C17744445 @default.
- W2960236182 hasConcept C199539241 @default.
- W2960236182 hasConcept C203718221 @default.
- W2960236182 hasConcept C24890656 @default.
- W2960236182 hasConcept C2776359362 @default.
- W2960236182 hasConcept C2779662365 @default.
- W2960236182 hasConcept C28490314 @default.
- W2960236182 hasConcept C39890363 @default.
- W2960236182 hasConcept C41008148 @default.
- W2960236182 hasConcept C62520636 @default.
- W2960236182 hasConcept C64922751 @default.
- W2960236182 hasConcept C94625758 @default.
- W2960236182 hasConceptScore W2960236182C107457646 @default.
- W2960236182 hasConceptScore W2960236182C121332964 @default.
- W2960236182 hasConceptScore W2960236182C127220857 @default.
- W2960236182 hasConceptScore W2960236182C13895895 @default.
- W2960236182 hasConceptScore W2960236182C154945302 @default.
- W2960236182 hasConceptScore W2960236182C167966045 @default.
- W2960236182 hasConceptScore W2960236182C17744445 @default.
- W2960236182 hasConceptScore W2960236182C199539241 @default.
- W2960236182 hasConceptScore W2960236182C203718221 @default.
- W2960236182 hasConceptScore W2960236182C24890656 @default.
- W2960236182 hasConceptScore W2960236182C2776359362 @default.
- W2960236182 hasConceptScore W2960236182C2779662365 @default.
- W2960236182 hasConceptScore W2960236182C28490314 @default.
- W2960236182 hasConceptScore W2960236182C39890363 @default.
- W2960236182 hasConceptScore W2960236182C41008148 @default.
- W2960236182 hasConceptScore W2960236182C62520636 @default.
- W2960236182 hasConceptScore W2960236182C64922751 @default.
- W2960236182 hasConceptScore W2960236182C94625758 @default.
- W2960236182 hasIssue "1" @default.
- W2960236182 hasLocation W29602361821 @default.
- W2960236182 hasOpenAccess W2960236182 @default.
- W2960236182 hasPrimaryLocation W29602361821 @default.
- W2960236182 hasRelatedWork W1528910554 @default.
- W2960236182 hasRelatedWork W1572484265 @default.