Matches in SemOpenAlex for { <https://semopenalex.org/work/W2960466675> ?p ?o ?g. }
Showing items 1 to 50 of
50
with 100 items per page.
- W2960466675 abstract "Data Science for Wind Energy provides an in-depth discussion on how data science methods can improve decision making for wind energy applications, near-ground wind field analysis and forecast, turbine power curve fitting and performance analysis, turbine reliability assessment, and maintenance optimization for wind turbines and wind farms. A broad set of data science methods covered, including time series models, spatio-temporal analysis, kernel regression, decision trees, kNN, splines, Bayesian inference, and importance sampling. More importantly, the data science methods are described in the context of wind energy applications, with specific wind energy examples and case studies. Please also visit the author’s book site at https://aml.engr.tamu.edu/book-dswe.FeaturesProvides an integral treatment of data science methods and wind energy applicationsIncludes specific demonstration of particular data science methods and their use in the context of addressing wind energy needsPresents real data, case studies and computer codes from wind energy research and industrial practiceCovers material based on the author's ten plus years of academic research and insights" @default.
- W2960466675 created "2019-07-23" @default.
- W2960466675 creator A5066523990 @default.
- W2960466675 date "2019-06-04" @default.
- W2960466675 modified "2023-10-13" @default.
- W2960466675 title "Data Science for Wind Energy" @default.
- W2960466675 doi "https://doi.org/10.1201/9780429490972" @default.
- W2960466675 hasPublicationYear "2019" @default.
- W2960466675 type Work @default.
- W2960466675 sameAs 2960466675 @default.
- W2960466675 citedByCount "29" @default.
- W2960466675 countsByYear W29604666752020 @default.
- W2960466675 countsByYear W29604666752021 @default.
- W2960466675 countsByYear W29604666752022 @default.
- W2960466675 countsByYear W29604666752023 @default.
- W2960466675 crossrefType "reference-book" @default.
- W2960466675 hasAuthorship W2960466675A5066523990 @default.
- W2960466675 hasBestOaLocation W29604666752 @default.
- W2960466675 hasConcept C119599485 @default.
- W2960466675 hasConcept C127413603 @default.
- W2960466675 hasConcept C153294291 @default.
- W2960466675 hasConcept C205649164 @default.
- W2960466675 hasConcept C39432304 @default.
- W2960466675 hasConcept C41008148 @default.
- W2960466675 hasConcept C78600449 @default.
- W2960466675 hasConceptScore W2960466675C119599485 @default.
- W2960466675 hasConceptScore W2960466675C127413603 @default.
- W2960466675 hasConceptScore W2960466675C153294291 @default.
- W2960466675 hasConceptScore W2960466675C205649164 @default.
- W2960466675 hasConceptScore W2960466675C39432304 @default.
- W2960466675 hasConceptScore W2960466675C41008148 @default.
- W2960466675 hasConceptScore W2960466675C78600449 @default.
- W2960466675 hasLocation W29604666751 @default.
- W2960466675 hasLocation W29604666752 @default.
- W2960466675 hasOpenAccess W2960466675 @default.
- W2960466675 hasPrimaryLocation W29604666751 @default.
- W2960466675 hasRelatedWork W1974972680 @default.
- W2960466675 hasRelatedWork W2020153697 @default.
- W2960466675 hasRelatedWork W2103706547 @default.
- W2960466675 hasRelatedWork W2114933521 @default.
- W2960466675 hasRelatedWork W2130522552 @default.
- W2960466675 hasRelatedWork W2748952813 @default.
- W2960466675 hasRelatedWork W2899084033 @default.
- W2960466675 hasRelatedWork W3085710010 @default.
- W2960466675 hasRelatedWork W4303945791 @default.
- W2960466675 hasRelatedWork W4383370934 @default.
- W2960466675 isParatext "false" @default.
- W2960466675 isRetracted "false" @default.
- W2960466675 magId "2960466675" @default.
- W2960466675 workType "book" @default.