Matches in SemOpenAlex for { <https://semopenalex.org/work/W2960484416> ?p ?o ?g. }
- W2960484416 abstract "We present a personalized and reliable prediction model for healthcare, which can provide individually tailored medical services such as diagnosis, disease treatment, and prevention. Our proposed framework targets at making personalized and reliable predictions from time-series data, such as Electronic Health Records (EHR), by modeling two complementary components: i) a shared component that captures global trend across diverse patients and ii) a patient-specific component that models idiosyncratic variability for each patient. To this end, we propose a composite model of a deep neural network to learn complex global trends from the large number of patients, and Gaussian Processes (GP) to probabilistically model individual time-series given relatively small number of visits per patient. We evaluate our model on diverse and heterogeneous tasks from EHR datasets and show practical advantages over standard time-series deep models such as pure Recurrent Neural Network (RNN)." @default.
- W2960484416 created "2019-07-23" @default.
- W2960484416 creator A5039532323 @default.
- W2960484416 creator A5040672722 @default.
- W2960484416 creator A5070302452 @default.
- W2960484416 creator A5079158064 @default.
- W2960484416 creator A5084833958 @default.
- W2960484416 creator A5086698569 @default.
- W2960484416 date "2018-06-05" @default.
- W2960484416 modified "2023-09-27" @default.
- W2960484416 title "Deep Mixed Effect Model using Gaussian Processes: A Personalized and Reliable Prediction for Healthcare" @default.
- W2960484416 cites W137285897 @default.
- W2960484416 cites W1512511032 @default.
- W2960484416 cites W1519342765 @default.
- W2960484416 cites W1533660737 @default.
- W2960484416 cites W1966716734 @default.
- W2960484416 cites W2029887827 @default.
- W2960484416 cites W2036084078 @default.
- W2960484416 cites W2059980448 @default.
- W2960484416 cites W2064675550 @default.
- W2960484416 cites W2095705004 @default.
- W2960484416 cites W2099768828 @default.
- W2960484416 cites W2106981782 @default.
- W2960484416 cites W2129075135 @default.
- W2960484416 cites W2150884987 @default.
- W2960484416 cites W2157331557 @default.
- W2960484416 cites W2157826563 @default.
- W2960484416 cites W2162724919 @default.
- W2960484416 cites W2162800060 @default.
- W2960484416 cites W2187187251 @default.
- W2960484416 cites W2244749007 @default.
- W2960484416 cites W2251230758 @default.
- W2960484416 cites W2346576770 @default.
- W2960484416 cites W2517221375 @default.
- W2960484416 cites W2588120057 @default.
- W2960484416 cites W2601450892 @default.
- W2960484416 cites W2739429571 @default.
- W2960484416 cites W2742093937 @default.
- W2960484416 cites W2745765770 @default.
- W2960484416 cites W2753160622 @default.
- W2960484416 cites W2772764138 @default.
- W2960484416 cites W2784181452 @default.
- W2960484416 cites W2913243980 @default.
- W2960484416 cites W2962875063 @default.
- W2960484416 cites W2963078493 @default.
- W2960484416 cites W2963271116 @default.
- W2960484416 cites W2963341924 @default.
- W2960484416 cites W2963711523 @default.
- W2960484416 cites W2963808450 @default.
- W2960484416 cites W2964010366 @default.
- W2960484416 cites W2964059111 @default.
- W2960484416 cites W2964105864 @default.
- W2960484416 cites W2964121744 @default.
- W2960484416 cites W2964135722 @default.
- W2960484416 cites W2985962305 @default.
- W2960484416 doi "https://doi.org/10.48550/arxiv.1806.01551" @default.
- W2960484416 hasPublicationYear "2018" @default.
- W2960484416 type Work @default.
- W2960484416 sameAs 2960484416 @default.
- W2960484416 citedByCount "1" @default.
- W2960484416 countsByYear W29604844162019 @default.
- W2960484416 crossrefType "posted-content" @default.
- W2960484416 hasAuthorship W2960484416A5039532323 @default.
- W2960484416 hasAuthorship W2960484416A5040672722 @default.
- W2960484416 hasAuthorship W2960484416A5070302452 @default.
- W2960484416 hasAuthorship W2960484416A5079158064 @default.
- W2960484416 hasAuthorship W2960484416A5084833958 @default.
- W2960484416 hasAuthorship W2960484416A5086698569 @default.
- W2960484416 hasBestOaLocation W29604844161 @default.
- W2960484416 hasConcept C108583219 @default.
- W2960484416 hasConcept C119857082 @default.
- W2960484416 hasConcept C121332964 @default.
- W2960484416 hasConcept C124101348 @default.
- W2960484416 hasConcept C147168706 @default.
- W2960484416 hasConcept C151406439 @default.
- W2960484416 hasConcept C154945302 @default.
- W2960484416 hasConcept C163716315 @default.
- W2960484416 hasConcept C168167062 @default.
- W2960484416 hasConcept C32220436 @default.
- W2960484416 hasConcept C41008148 @default.
- W2960484416 hasConcept C50644808 @default.
- W2960484416 hasConcept C60644358 @default.
- W2960484416 hasConcept C61326573 @default.
- W2960484416 hasConcept C62520636 @default.
- W2960484416 hasConcept C86803240 @default.
- W2960484416 hasConcept C97355855 @default.
- W2960484416 hasConceptScore W2960484416C108583219 @default.
- W2960484416 hasConceptScore W2960484416C119857082 @default.
- W2960484416 hasConceptScore W2960484416C121332964 @default.
- W2960484416 hasConceptScore W2960484416C124101348 @default.
- W2960484416 hasConceptScore W2960484416C147168706 @default.
- W2960484416 hasConceptScore W2960484416C151406439 @default.
- W2960484416 hasConceptScore W2960484416C154945302 @default.
- W2960484416 hasConceptScore W2960484416C163716315 @default.
- W2960484416 hasConceptScore W2960484416C168167062 @default.
- W2960484416 hasConceptScore W2960484416C32220436 @default.
- W2960484416 hasConceptScore W2960484416C41008148 @default.
- W2960484416 hasConceptScore W2960484416C50644808 @default.
- W2960484416 hasConceptScore W2960484416C60644358 @default.
- W2960484416 hasConceptScore W2960484416C61326573 @default.